dor_id: 10912

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la revista "Atmósfera", se juzgan por medio de un proceso de revisión por pares

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT); Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Scientific Electronic Library Online (SciELO); SCOPUS, Web Of Science (WoS); SCImago Journal Rank (SJR)

561.#.#.u: https://www.atmosfera.unam.mx/

650.#.4.x: Físico Matemáticas y Ciencias de la Tierra

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: https://www.revistascca.unam.mx/atm/index.php/atm/index

351.#.#.b: Atmósfera

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: https://revistas.unam.mx/catalogo/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: https://www.revistascca.unam.mx/atm/index.php/atm/article/view/ATM.2017.30.01.03/46582

100.1.#.a: Augustine, Shivan Michael; Chetty, Naven

524.#.#.a: Augustine, Shivan Michael, et al. (2017). Wind tunnel simulations to detect and quantify the turbulent effects of a propagating He-Ne laser beam in air. Atmósfera; Vol. 30 No. 1, 2017; 27-38. Recuperado de https://repositorio.unam.mx/contenidos/10912

720.#.#.a: National Research FoundationCouncil for Scientific and Industrial Research

245.1.0.a: Wind tunnel simulations to detect and quantify the turbulent effects of a propagating He-Ne laser beam in air

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM

264.#.0.c: 2017

264.#.1.c: 2016-12-20

653.#.#.a: Thermal turbulence; wind tunnel; Fried´s parameter; structure function; interferometer; laser beam propagation; turbulence strength

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC 4.0 Internacional, https://creativecommons.org/licenses/by-nc/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico editora@atmosfera.unam.mx

884.#.#.k: https://www.revistascca.unam.mx/atm/index.php/atm/article/view/ATM.2017.30.01.03

001.#.#.#: 022.oai:ojs.pkp.sfu.ca:article/52244

041.#.7.h: eng

520.3.#.a: In this paper, we ascertain the effectiveness of our experimental setup in detecting and quantifying the turbulent effects experienced by a He-Ne laser beam as it passes through a wind tunnel. The beam propagated through a series of optical components as well as the in-house designed and manufactured wind tunnel under controlled laboratory conditions. The wind tunnel was built to fit within an existing setup, which has previously proven to be successful in detecting the turbulent effects from other turbulence models. For various wind speeds and temperature settings, the setup has been successful as it was able to detect and measure the atmospheric conditions within the turbulent environment and fully quantify the characteristics of the laser beam. With the use of highly accurate measuring devices, we were able to successfully measure the refractive index structure function (Cn2) and the coherence diameter (Fried’s parameter). Values for Cn2 ranged between 1.61 × 10–16 m–2/3 and 6.77 × 10–15 m–2/3, which can be classified under the moderate to strong turbulence regime. These results tie in well with various published works for similar atmospheric scenarios hence this setup was successfully able to fully detect and quantify the thermal turbulence and wind velocity effects on the laser beam using a point diffraction interferometer.

773.1.#.t: Atmósfera; Vol. 30 No. 1 (2017); 27-38

773.1.#.o: https://www.revistascca.unam.mx/atm/index.php/atm/index

046.#.#.j: 2021-10-20 00:00:00.000000

022.#.#.a: ISSN electrónico: 2395-8812; ISSN impreso: 0187-6236

310.#.#.a: Trimestral

300.#.#.a: Páginas: 27-38

264.#.1.b: Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM

doi: https://doi.org/10.20937/ATM.2017.30.01.03

handle: 4b70805ca9d3f87b

harvesting_date: 2023-06-20 16:00:00.0

856.#.0.q: application/pdf

last_modified: 2023-06-20 16:00:00

license_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode.es

license_type: by-nc

_deleted_conflicts: 2-df58262cf0062cff27cac6e03e74e2ac

No entro en nada

No entro en nada 2

Artículo

Wind tunnel simulations to detect and quantify the turbulent effects of a propagating He-Ne laser beam in air

Augustine, Shivan Michael; Chetty, Naven

Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM, publicado en Atmósfera, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Augustine, Shivan Michael, et al. (2017). Wind tunnel simulations to detect and quantify the turbulent effects of a propagating He-Ne laser beam in air. Atmósfera; Vol. 30 No. 1, 2017; 27-38. Recuperado de https://repositorio.unam.mx/contenidos/10912

Descripción del recurso

Autor(es)
Augustine, Shivan Michael; Chetty, Naven
Colaborador(es)
National Research FoundationCouncil for Scientific and Industrial Research
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
Wind tunnel simulations to detect and quantify the turbulent effects of a propagating He-Ne laser beam in air
Fecha
2016-12-20
Resumen
In this paper, we ascertain the effectiveness of our experimental setup in detecting and quantifying the turbulent effects experienced by a He-Ne laser beam as it passes through a wind tunnel. The beam propagated through a series of optical components as well as the in-house designed and manufactured wind tunnel under controlled laboratory conditions. The wind tunnel was built to fit within an existing setup, which has previously proven to be successful in detecting the turbulent effects from other turbulence models. For various wind speeds and temperature settings, the setup has been successful as it was able to detect and measure the atmospheric conditions within the turbulent environment and fully quantify the characteristics of the laser beam. With the use of highly accurate measuring devices, we were able to successfully measure the refractive index structure function (Cn2) and the coherence diameter (Fried’s parameter). Values for Cn2 ranged between 1.61 × 10–16 m–2/3 and 6.77 × 10–15 m–2/3, which can be classified under the moderate to strong turbulence regime. These results tie in well with various published works for similar atmospheric scenarios hence this setup was successfully able to fully detect and quantify the thermal turbulence and wind velocity effects on the laser beam using a point diffraction interferometer.
Tema
Thermal turbulence; wind tunnel; Fried´s parameter; structure function; interferometer; laser beam propagation; turbulence strength
Idioma
eng
ISSN
ISSN electrónico: 2395-8812; ISSN impreso: 0187-6236

Enlaces