dor_id: 4108036

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la Revista Mexicana de Física se someten a un estricto proceso de revisión llevado a cabo por árbitros anónimos, independientes y especializados en todo el mundo.

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT), Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex), Scientific Electronic Library Online (SciELO), SCOPUS, Web Of Science (WoS)

561.#.#.u: http://www.fciencias.unam.mx/

650.#.4.x: Físico Matemáticas y Ciencias de la Tierra

336.#.#.b: info:eu-repo/semantics/article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: https://rmf.smf.mx/ojs/rmf/index

351.#.#.b: Revista Mexicana de Física

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: http://www.revistas.unam.mx/front/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: http://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial, UNAM

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: https://rmf.smf.mx/ojs/rmf/article/view/4160/4127

100.1.#.a: Calderón Ramón, C.; F, J.; Rodríguez Achach, M.; J, L.; R, J.; Benavides Cruz, M.; I, M.; González Lee, M.; Pérez Meana, H.; Enciso Aguilar, M.; Chávez Pérez, R.; Martínez García.

524.#.#.a: Calderón Ramón, C., et al. (2015). Use of the perfect electric conductor boundary conditions to discretize a diffractor in FDTD/PML environment. Revista Mexicana de Física; Vol 61, No 5 Sept-Oct: 344-0. Recuperado de https://repositorio.unam.mx/contenidos/4108036

245.1.0.a: Use of the perfect electric conductor boundary conditions to discretize a diffractor in FDTD/PML environment

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Facultad de Ciencias, UNAM

264.#.0.c: 2015

264.#.1.c: 2015-01-01

653.#.#.a: Conductor electric perfect conditions (PEC); finite difference time domain method (FDTD); perfectly matched layers (PML); antenna array; diffractor

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, fecha de asignación de la licencia 2015-01-01, para un uso diferente consultar al responsable jurídico del repositorio por medio de rmf@ciencias.unam.mx

884.#.#.k: https://rmf.smf.mx/ojs/rmf/article/view/4160

001.#.#.#: oai:ojs.rmf.smf.mx:article/4160

041.#.7.h: eng

520.3.#.a: In this paper we present a computational electromagnetic simulation of a multiform diffractor placed at the center of an antenna array. Our approach is to solve Maxwell's differential equations with a discrete space-time formulation, using the Finite Difference Time Domain (FDTD) method. The Perfectly Matched Layers (PML) method is used as an absorbing boundary condition, to prevent further spread of the electromagnetic wave to the outside of the calculation region. The Perfect Electric Conductor (PEC) boundary conditions are used to represent the periphery of the region and the diffractor. The system consists of an antenna array of 20 elements: a transmission antenna (TX1) which feeds a Gaussian pulse with center frequency of 7.5 GHz, and 19 reception antennas (RX1 to RX19), which serve as sensors. The diffractor is discretized for integration into the environment FDTD, and two case studies are presented according to their geometric shape: square and circular diffractor. In this work, the goal is to determine the Maxwell's equations, analyze all the zones that form the diffractor and plug them in the computational algorithm in Matlab. We show the equations for each case and obtain the electromagnetic parameters of the system: electric fields, magnetic fields, and reflected power, sensed by the RX's.

773.1.#.t: Revista Mexicana de Física; Vol 61, No 5 Sept-Oct (2015): 344-0

773.1.#.o: https://rmf.smf.mx/ojs/rmf/index

046.#.#.j: 2020-11-25 00:00:00.000000

022.#.#.a: 2683-2224 (digital); 0035-001X (impresa)

310.#.#.a: Bimestral

264.#.1.b: Sociedad Mexicana de Física, A.C.

758.#.#.1: https://rmf.smf.mx/ojs/rmf/index

handle: 707a1447f0320568

harvesting_date: 2020-09-23 00:00:00.0

856.#.0.q: application/pdf

last_modified: 2020-11-27 00:00:00

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

No entro en nada

No entro en nada 2

Artículo

Use of the perfect electric conductor boundary conditions to discretize a diffractor in FDTD/PML environment

Calderón Ramón, C.; F, J.; Rodríguez Achach, M.; J, L.; R, J.; Benavides Cruz, M.; I, M.; González Lee, M.; Pérez Meana, H.; Enciso Aguilar, M.; Chávez Pérez, R.; Martínez García.

Facultad de Ciencias, UNAM, publicado en Revista Mexicana de Física, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Facultad de Ciencias, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Calderón Ramón, C., et al. (2015). Use of the perfect electric conductor boundary conditions to discretize a diffractor in FDTD/PML environment. Revista Mexicana de Física; Vol 61, No 5 Sept-Oct: 344-0. Recuperado de https://repositorio.unam.mx/contenidos/4108036

Descripción del recurso

Autor(es)
Calderón Ramón, C.; F, J.; Rodríguez Achach, M.; J, L.; R, J.; Benavides Cruz, M.; I, M.; González Lee, M.; Pérez Meana, H.; Enciso Aguilar, M.; Chávez Pérez, R.; Martínez García.
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
Use of the perfect electric conductor boundary conditions to discretize a diffractor in FDTD/PML environment
Fecha
2015-01-01
Resumen
In this paper we present a computational electromagnetic simulation of a multiform diffractor placed at the center of an antenna array. Our approach is to solve Maxwell's differential equations with a discrete space-time formulation, using the Finite Difference Time Domain (FDTD) method. The Perfectly Matched Layers (PML) method is used as an absorbing boundary condition, to prevent further spread of the electromagnetic wave to the outside of the calculation region. The Perfect Electric Conductor (PEC) boundary conditions are used to represent the periphery of the region and the diffractor. The system consists of an antenna array of 20 elements: a transmission antenna (TX1) which feeds a Gaussian pulse with center frequency of 7.5 GHz, and 19 reception antennas (RX1 to RX19), which serve as sensors. The diffractor is discretized for integration into the environment FDTD, and two case studies are presented according to their geometric shape: square and circular diffractor. In this work, the goal is to determine the Maxwell's equations, analyze all the zones that form the diffractor and plug them in the computational algorithm in Matlab. We show the equations for each case and obtain the electromagnetic parameters of the system: electric fields, magnetic fields, and reflected power, sensed by the RX's.
Tema
Conductor electric perfect conditions (PEC); finite difference time domain method (FDTD); perfectly matched layers (PML); antenna array; diffractor
Idioma
eng
ISSN
2683-2224 (digital); 0035-001X (impresa)

Enlaces