dor_id: 41284

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la Revista Mexicana de Física se someten a un estricto proceso de revisión llevado a cabo por árbitros anónimos, independientes y especializados en todo el mundo.

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT), Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex), Scientific Electronic Library Online (SciELO), SCOPUS, Web Of Science (WoS)

561.#.#.u: http://www.fciencias.unam.mx/

650.#.4.x: Físico Matemáticas y Ciencias de la Tierra

336.#.#.b: info:eu-repo/semantics/article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: https://rmf.smf.mx/ojs/rmf/index

351.#.#.b: Revista Mexicana de Física

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: http://www.revistas.unam.mx/front/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: http://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial, UNAM

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: https://rmf.smf.mx/ojs/rmf/article/view/3410/3377

100.1.#.a: Klapp, J.; Di G, L.; Galindo, S.; Sira, E.

524.#.#.a: Klapp, J., et al. (2005). Two-dimensional treesph simulations of choked flow systems. Revista Mexicana de Física; Vol 51, No 6: 563-0. Recuperado de https://repositorio.unam.mx/contenidos/41284

245.1.0.a: Two-dimensional treesph simulations of choked flow systems

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Facultad de Ciencias, UNAM

264.#.0.c: 2005

264.#.1.c: 2005-01-01

653.#.#.a: SPH; numerical particle metnods; choked flow; compressible flow

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, fecha de asignación de la licencia 2005-01-01, para un uso diferente consultar al responsable jurídico del repositorio por medio de rmf@ciencias.unam.mx

884.#.#.k: https://rmf.smf.mx/ojs/rmf/article/view/3410

001.#.#.#: oai:ojs.rmf.smf.mx:article/3410

041.#.7.h: eng

520.3.#.a: It is well-known that the flow of gas, liquid, and their mixtures through restrictors installed in pipeline systems is of great practical importance in many industrial processes. In spite of its significance, numerical hydrodynamics simulations of such flows are almost non-existent in the literature. Here we present exploratory two-dimensional calculations of the flow of a viscous, single-phase fluid through a wellhead choke of real dimensions, using the method of Smoothed Particle Hydrodynamics (SPH) coupled with a simple isothermal equation of state for description of the flow. The results indicate that an approximately stationary mean flow pattern is rapidly established across the entire tube, with the density and pressure dropping and the flow velocity rising within the choke throat. If the downstream flow is inhibited at the outlet end of the tube, a pressure drop of about 12% occurs across the choke when the mean flow reaches an approximate steady state. If, on the other hand, the flow is not inhibited downstream, the pressure drop is reduced to about 8% or less. The flow across the choke throat remains subsonic with typical velocities of \sim 0.1c, where c denotes the sound speed. In contrast, the flow velocities in the upstream and downstream sections of the pipe are on the average factors of \sim 6 and \sim 3.5 times lower, respectively. Correlation studies based on experimental data indicate that the pressure drop is only 3% or even less for gas flow through wellhead chokes at a speed of 0.1c. This discrepancy reflects the inadequacy of the isothermal equation of state to describe realistic gas flows.

773.1.#.t: Revista Mexicana de Física; Vol 51, No 6 (2005): 563-0

773.1.#.o: https://rmf.smf.mx/ojs/rmf/index

046.#.#.j: 2020-11-25 00:00:00.000000

022.#.#.a: 2683-2224 (digital); 0035-001X (impresa)

310.#.#.a: Bimestral

264.#.1.b: Sociedad Mexicana de Física, A.C.

758.#.#.1: https://rmf.smf.mx/ojs/rmf/index

handle: 009fbb95b66423ea

harvesting_date: 2020-09-23 00:00:00.0

856.#.0.q: application/pdf

last_modified: 2020-11-27 00:00:00

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

_deleted_conflicts: 6-fc3dc3b41707ee0bfccafb58c37cae27,2-e5c44b47ddfad7c428d6031a007f3c86

No entro en nada

No entro en nada 2

Artículo

Two-dimensional treesph simulations of choked flow systems

Klapp, J.; Di G, L.; Galindo, S.; Sira, E.

Facultad de Ciencias, UNAM, publicado en Revista Mexicana de Física, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Facultad de Ciencias, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Klapp, J., et al. (2005). Two-dimensional treesph simulations of choked flow systems. Revista Mexicana de Física; Vol 51, No 6: 563-0. Recuperado de https://repositorio.unam.mx/contenidos/41284

Descripción del recurso

Autor(es)
Klapp, J.; Di G, L.; Galindo, S.; Sira, E.
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
Two-dimensional treesph simulations of choked flow systems
Fecha
2005-01-01
Resumen
It is well-known that the flow of gas, liquid, and their mixtures through restrictors installed in pipeline systems is of great practical importance in many industrial processes. In spite of its significance, numerical hydrodynamics simulations of such flows are almost non-existent in the literature. Here we present exploratory two-dimensional calculations of the flow of a viscous, single-phase fluid through a wellhead choke of real dimensions, using the method of Smoothed Particle Hydrodynamics (SPH) coupled with a simple isothermal equation of state for description of the flow. The results indicate that an approximately stationary mean flow pattern is rapidly established across the entire tube, with the density and pressure dropping and the flow velocity rising within the choke throat. If the downstream flow is inhibited at the outlet end of the tube, a pressure drop of about 12% occurs across the choke when the mean flow reaches an approximate steady state. If, on the other hand, the flow is not inhibited downstream, the pressure drop is reduced to about 8% or less. The flow across the choke throat remains subsonic with typical velocities of \sim 0.1c, where c denotes the sound speed. In contrast, the flow velocities in the upstream and downstream sections of the pipe are on the average factors of \sim 6 and \sim 3.5 times lower, respectively. Correlation studies based on experimental data indicate that the pressure drop is only 3% or even less for gas flow through wellhead chokes at a speed of 0.1c. This discrepancy reflects the inadequacy of the isothermal equation of state to describe realistic gas flows.
Tema
SPH; numerical particle metnods; choked flow; compressible flow
Idioma
eng
ISSN
2683-2224 (digital); 0035-001X (impresa)

Enlaces