Artículo

Thermal properties and degradation kinetics of epoxy-γ-alumina and epoxy-zinc oxide light weight composites

Camacho, N.; May Crespo, J. F.; Rojas Trigos, J. B.; Martinez, K.; Marin, E.; Mondragon Rodriguez, G.

Facultad de Ciencias, UNAM, publicado en Revista Mexicana de Física, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Facultad de Ciencias, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Camacho, N., et al. (2020). Thermal properties and degradation kinetics of epoxy-γ-alumina and epoxy-zinc oxide light weight composites. Revista Mexicana de Física; Vol 66, No 4 Jul-Aug: 479-489. Recuperado de https://repositorio.unam.mx/contenidos/4106962

Descripción del recurso

Autor(es)
Camacho, N.; May Crespo, J. F.; Rojas Trigos, J. B.; Martinez, K.; Marin, E.; Mondragon Rodriguez, G.
Adscripción del autor
Agencia Espacial Mexicana (275783 “Diseño y caracterización de materiales compuestos para estructuras de nanosatélites tipo CubeSat”)
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
Thermal properties and degradation kinetics of epoxy-γ-alumina and epoxy-zinc oxide light weight composites
Fecha
2020-07-01
Resumen
Lightweight composite materials are the gold standard in aeronautical and aerospace applications due to their strength and low mass. To carry higher payloads and decrease launching costs, nanosatellites lightweight. Additionally, nanosatellites must also resist high thermal radiation loads while working in orbit. Polymer-based composite materials maintain low mass and added reinforcing ceramic fillers contributes to increasing radiation resistance, thus producing composites that meet both requirements. In this work, the effects of γ-alumina (Al2O3) and zinc oxide (ZnO) micro- and nanoparticles on the thermal properties and degradation kinetics of epoxy-based composites were investigated. The effective thermal conductivity improved up to 17.8 % for epoxy/γ-Al2O3 and 27.4 % for epoxy/ZnO. The effective thermal diffusivity values show a monotonic decreasing behavior as a function of the particle concentration for the epoxy/γ-Al2O3 composites; for the epoxy/ZnO composites, no correlation on the effective thermal diffusivity values with the ZnO-content was observed. Both oxide-based ceramic fillers increase the thermal stability of epoxy up to 250 °C; however, γ-Al2O3 decreased the maxima decomposition temperature of the epoxy matrix by 6°C. Zinc oxide did not affect the maxima decomposition temperature but decreased the activation energy of epoxy by sim 45 %. These results provide a feasible manufacturing method for epoxy-based composite materials (i.e. nanosatellites) where efficient heat transfer, heat resistance, and low mass are required.
Tema
Epoxy-based composites, Oxide ceramic fillers, Thermal stability, Thermal conductivity.
Idioma
eng
ISSN
2683-2224 (digital); 0035-001X (impresa)

Enlaces