Artículo

The Frenet-Serret description of Born rigidity and its application to the Dirac equation

Formiga, J. B.

Facultad de Ciencias, UNAM, publicado en Revista Mexicana de Física, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Facultad de Ciencias, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Formiga, J. B. (2020). The Frenet-Serret description of Born rigidity and its application to the Dirac equation. Revista Mexicana de Física; Vol 66, No 2 Mar-Apr: 180-186. Recuperado de https://repositorio.unam.mx/contenidos/4106968

Descripción del recurso

Autor(es)
Formiga, J. B.
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
The Frenet-Serret description of Born rigidity and its application to the Dirac equation
Fecha
2020-03-01
Resumen
The role played by non-inertial frames in physics is one of the most interesting subjects that we can study when dealing with a physical theory. It does not matter whether we are studying classical theories such as special relativity or quantum theory, the idea of an accelerated frame is always one of the first ideas to come to our minds. In the case of special relativity, a problem with the concept of rigidity emerged as soon as Max Born gave a reasonable definition of rigid motion: the Herglotz-Noether theorem imposes a strong restriction on the possible rigid motions. In this paper, the equivalence of this theorem with another one that is formulated with the help of Frenet-Serret formalism is proved, showing the connection between the rigid motion and the curvatures of the observer's trajectory in spacetime. In addition, the Dirac equation in the Frenet-Serret frame for an arbitrary observer is obtained and applied to the rotating observers. The solution in the rotating frame is given in terms of that of an inertial one.
Tema
Born rigidity; accelerated frames; Dirac equation; rotating observers; Frenet-Serret formalism.
Idioma
eng
ISSN
2683-2224 (digital); 0035-001X (impresa)

Enlaces