
La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC 4.0 Internacional, https://creativecommons.org/licenses/by-nc/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico editora@atmosfera.unam.mx.
Ver términos de la licencia Entidad o dependencia
Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx
De, Arijit, et al. (2024). Spatiotemporal analysis of different vegetation indices and relation to meteorological parameters over a tropical urban location and its surroundings. Atmósfera; Vol. 38, 2024; 911-934. Recuperado de https://repositorio.unam.mx/contenidos/4158782
Autor(es)
De, Arijit; Sahani, Nemai; Datta, Abhirup; Maitra, Animesh
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
Spatiotemporal analysis of different vegetation indices and relation to meteorological parameters over a tropical urban location and its surroundings
Fecha
2024-09-25
Resumen
The paper investigates the long-term spatiotemporal characteristics of various satellite-derived vegetation indices (VI), such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), as well as Gross Primary Productivity (GPP) and Sun-induced Chlorophyll Fluorescence (SIF) over the Kolkata conurbation and its surrounding areas from 2003 to 2016. Additionally, it analyzes the correlation between these vegetation indices and atmospheric parameters like rainfall, soil moisture (SM), evapotranspiration (ET), and land surface temperature (LST). Monthly variations of these parameters are observed, and inter-annual variability is examined using linear regression techniques. The study also observes the time average spatial correlation between vegetation indices and weather parameters. Moreover, it investigates the time-lag effect (0, 1, 2, and 3 months) using Pearson correlation coefficient analysis between VI and other meteorological parameters. NDVI and EVI exhibit maximum correlation with rainfall, SM, ET, and LST within specific lag periods. NDVI and EVI show a slow response rate to rainfall, and their sensitivity depends on SM and ET. A positive correlation is observed between NDVI and ET, indicating that NDVI increases with vaporized water in the atmosphere. A negative correlation is noted between NDVI and LST in the region studied. The study’s insights are valuable for predicting future vegetation index characteristics based on meteorological parameters in tropical urban areas like Kolkata and its surroundings. This predictive capability can aid in mitigating adverse weather effects on vegetation.
Tema
satellite data; spatiotemporal analysis; vegetation index; meteorological parameters; urban location; linear regression; correlation
Idioma
eng
ISSN
ISSN electrónico: 2395-8812; ISSN impreso: 0187-6236