dor_id: 4110259

506.#.#.a: Público

590.#.#.d: Los artículos enviados a JART se juzgan por medio de un proceso de revisión por pares

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT), Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex), SCOPUS, Directory of Open Access Journals (DOAJ), Periódica, Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Redalyc), Google Académico

561.#.#.u: https://www.icat.unam.mx/

650.#.4.x: Ingenierías

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: http://jart.icat.unam.mx/index.php/jart

351.#.#.b: Journal of Applied Research and Technology

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: http://www.revistas.unam.mx/front/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial, UNAM

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: http://jart.icat.unam.mx/index.php/jart/article/view/1196/784

100.1.#.a: Eldesoky, Abdalla; Kamel, Ahmed M.; Elhabiby, M.; Elhennawy, Hadia

524.#.#.a: Eldesoky, Abdalla, et al. (2020). Real time localization solution for land vehicle application using low-cost integrated sensors with GPS. Journal of Applied Research and Technology; Vol 18 No 4, 2020. Recuperado de https://repositorio.unam.mx/contenidos/4110259

245.1.0.a: Real time localization solution for land vehicle application using low-cost integrated sensors with GPS

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Instituto de Ciencias Aplicadas y Tecnología, UNAM

264.#.0.c: 2020

264.#.1.c: 2020-08-30

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY 4.0 Internacional, https://creativecommons.org/licenses/by/4.0/legalcode.es, fecha de asignación de la licencia 2020-08-30, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico revistas@unam.mx

884.#.#.k: http://jart.icat.unam.mx/index.php/jart/article/view/1196

001.#.#.#: oai:ojs2.localhost:article/1196

041.#.7.h: eng

520.3.#.a: The technique proposed in this research demonstrates a real time nonlinear data fusion solution based on extremely low-cost and grade inertial sensors for land vehicle navigation. Here, the utilized nonlinear multi-sensor data fusion (MSDF) is based on the combination between extremely low-cost micro electrical mechanical systems (MEMS) inertial, heading, pressure, and speed sensors in addition to satellite-based navigation system. The integrated navigation system fuses position and velocity states from the Global Positioning System (GPS), the velocity measurements from an odometer, heading angle observation from a magnetometer and navigation states from an inertial navigation system (INS). The implemented system performance is assessed through the post-processing of collected raw measurements and real time experimental work. The system that runs the real-time experiments is established on three connected platforms, two of them are based on a 32-bit ARMTM core and the third one is based 16-bit AVR ATMEL microcontroller. This microcontroller is connected to an on-board diagnostics (OBD) shield to collect the vehicle speed measurements. The raw data obtained from the integrated sensors is saved and post processed in MATLAB®. In normal conditions, the estimated position errors are reduced through the usage of INS/GPS integration with heading observation angle from a magnetometer. In GPS-denied environments, the integrated system uses the observations from INS, magnetometer in addition to the velocity from odometer to ensure a continuous and accurate navigation solution. A complementary filter (CF) is implemented to estimate and improve the pitch and roll angles calculations. In addition to that, an unscented Kalman filter (UKF) is used cascaded with the designed CF to complete the designed sensors fusion algorithm. Experimental results show that the designed MSDF can achieve a good level of accuracy and a continuous localization solution of a land vehicle in different GPS availability cases and can be implemented on the available in the market processors to be run in real time.

773.1.#.t: Journal of Applied Research and Technology; Vol 18 No 4 (2020); 214-228

773.1.#.o: http://jart.icat.unam.mx/index.php/jart

046.#.#.j: 2021-04-13 00:00:00.000000

022.#.#.a: ISSN electrónico: 2448-6736; ISSN: 1665-6423

310.#.#.a: Bimestral

300.#.#.a: Páginas 214-228

264.#.1.b: Instituto de Ciencias Aplicadas y Tecnología, UNAM

758.#.#.1: http://jart.icat.unam.mx/index.php/jart

doi: https://doi.org/10.22201/icat.24486736e.2020.18.4.1196

handle: 5073f5a8d0249411

harvesting_date: 2021-03-08 00:00:00.0

856.#.0.q: application/pdf

file_creation_date: 2020-09-25 22:36:53.0

file_modification_date: 2020-09-25 22:36:53.0

file_creator: Yolanda G.G.

file_name: abe91889d8481f87a02d7298d2453e9ad422c40c8796036be8c148408df1b44b.pdf

file_pages_number: 15

file_format_version: application/pdf; version=1.7

file_size: 854932

last_modified: 2021-04-15 12:10:00.000

license_url: https://creativecommons.org/licenses/by/4.0/legalcode.es

license_type: by

No entro en nada

No entro en nada 2

Artículo

Real time localization solution for land vehicle application using low-cost integrated sensors with GPS

Eldesoky, Abdalla; Kamel, Ahmed M.; Elhabiby, M.; Elhennawy, Hadia

Instituto de Ciencias Aplicadas y Tecnología, UNAM, publicado en Journal of Applied Research and Technology, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Cita

Eldesoky, Abdalla, et al. (2020). Real time localization solution for land vehicle application using low-cost integrated sensors with GPS. Journal of Applied Research and Technology; Vol 18 No 4, 2020. Recuperado de https://repositorio.unam.mx/contenidos/4110259

Descripción del recurso

Autor(es)
Eldesoky, Abdalla; Kamel, Ahmed M.; Elhabiby, M.; Elhennawy, Hadia
Tipo
Artículo de Investigación
Área del conocimiento
Ingenierías
Título
Real time localization solution for land vehicle application using low-cost integrated sensors with GPS
Fecha
2020-08-30
Resumen
The technique proposed in this research demonstrates a real time nonlinear data fusion solution based on extremely low-cost and grade inertial sensors for land vehicle navigation. Here, the utilized nonlinear multi-sensor data fusion (MSDF) is based on the combination between extremely low-cost micro electrical mechanical systems (MEMS) inertial, heading, pressure, and speed sensors in addition to satellite-based navigation system. The integrated navigation system fuses position and velocity states from the Global Positioning System (GPS), the velocity measurements from an odometer, heading angle observation from a magnetometer and navigation states from an inertial navigation system (INS). The implemented system performance is assessed through the post-processing of collected raw measurements and real time experimental work. The system that runs the real-time experiments is established on three connected platforms, two of them are based on a 32-bit ARMTM core and the third one is based 16-bit AVR ATMEL microcontroller. This microcontroller is connected to an on-board diagnostics (OBD) shield to collect the vehicle speed measurements. The raw data obtained from the integrated sensors is saved and post processed in MATLAB®. In normal conditions, the estimated position errors are reduced through the usage of INS/GPS integration with heading observation angle from a magnetometer. In GPS-denied environments, the integrated system uses the observations from INS, magnetometer in addition to the velocity from odometer to ensure a continuous and accurate navigation solution. A complementary filter (CF) is implemented to estimate and improve the pitch and roll angles calculations. In addition to that, an unscented Kalman filter (UKF) is used cascaded with the designed CF to complete the designed sensors fusion algorithm. Experimental results show that the designed MSDF can achieve a good level of accuracy and a continuous localization solution of a land vehicle in different GPS availability cases and can be implemented on the available in the market processors to be run in real time.
Idioma
eng
ISSN
ISSN electrónico: 2448-6736; ISSN: 1665-6423

Enlaces