dor_id: 4132608

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la revista "Geofísica Internacional", se juzgan por medio de un proceso de revisión por pares

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT); Scientific Electronic Library Online (SciELO); SCOPUS, Dialnet, Directory of Open Access Journals (DOAJ); Geobase

561.#.#.u: https://www.geofisica.unam.mx/

650.#.4.x: Físico Matemáticas y Ciencias de la Tierra

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: http://revistagi.geofisica.unam.mx/index.php/RGI

351.#.#.b: Geofísica Internacional

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: https://revistas.unam.mx/catalogo/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/131/126

100.1.#.a: Ochoa, José; Badan, Antonio; Sheinbaum, Julio; Castro, Jorge

524.#.#.a: Ochoa, José, et al. (2020). ‘Preferred Trajectories’ defined by mass and potential vorticity conservation. Geofísica Internacional; Vol. 59 Núm. 3: Julio 1, 2020; 195-207. Recuperado de https://repositorio.unam.mx/contenidos/4132608

245.1.0.a: ‘Preferred Trajectories’ defined by mass and potential vorticity conservation

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Instituto de Geofísica, UNAM

264.#.0.c: 2020

264.#.1.c: 2020-07-01

653.#.#.a: circulación geostrófica de gran escala; compresibilidad; restricciones de dirección; superficies neutrales; large-scale geostrophic; compressibility; direction constraints; neutral surfaces

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-SA 4.0 Internacional, https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico revistagi@igeofisica.unam.mx

884.#.#.k: http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/131

001.#.#.#: 063.oai:revistagi.geofisica.unam.mx:article/131

041.#.7.h: spa

520.3.#.a: Most schemes to estimate ‘absolute’ geostrophic velocities, in the absence of actual velocity measurements, use directional constraints of the flow at different vertical levels. These constraints allow the determination, often as a least square problem, of the integration constants in the thermal-wind equation. Examples of such directions are those defined by the intersection of constant potential temperature and isohaline surfaces, which under appropriate approximation are material surfaces. Here we show that under adiabatic, non-diffusive, geostrophic, hydrostatic motions, but allowing for compressibility, hence the focus being on the large-scale circulation, a pair of orthogonality constraints, much closely related with dynamical balances than the conservation of potential temperature and salinity, yield a flow direction. These constraints are the conservation of ‘local’ potential density and potential vorticity, in their reduction consistent with such approximations. ‘Neutral’, ‘Orthobaric’, and ‘Topobaric’ surfaces are approximately material surfaces defined as a result of the conservation of ‘local’ potential density, but in order to build such global surfaces additional assumptions are required. The conservation constraint is an inexact differential equation that cannot define, uniquely, a global surface. Here we explicitly show that to define the flow direction, there is no need to build global surfaces out of inexact differentials, as would also be the case with the iso-potential vorticity surfaces, thus avoiding additional assumptions. The ‘Preferred Trajectories’ are then well-defined paths as integrals along this flow direction without being the intersection of global surfaces. Some examples are included for illustrative purposes. Further analysis including error propagation are beyond the scope of this work and left for future studies.doi: https://doi.org/10.22201/igeof.00167169p.2020.59.3.2094

773.1.#.t: Geofísica Internacional; Vol. 59 Núm. 3: Julio 1, 2020; 195-207

773.1.#.o: http://revistagi.geofisica.unam.mx/index.php/RGI

022.#.#.a: ISSN-L: 2954-436X; ISSN impreso: 0016-7169

310.#.#.a: Trimestral

300.#.#.a: Páginas: 195-207

264.#.1.b: Instituto de Geofísica, UNAM

doi: https://doi.org/10.22201/igeof.00167169p.2020.59.3.2094

handle: 478e9834f4c75425

harvesting_date: 2023-06-20 16:00:00.0

856.#.0.q: application/pdf

file_creation_date: 2022-04-13 04:26:30.0

file_modification_date: 2022-04-13 04:26:30.0

file_creator: José Ochoa, Antonio Badan, Julio Sheinbaum, and Jorge Castro

file_name: 93cde959c5c1de63bc51dd0678f5613bd9bb8c3bd752fd06a5f86f4876d2afe5.pdf

file_pages_number: 14

file_format_version: application/pdf; version=1.3

file_size: 3042957

245.1.0.b: ‘Preferred Trajectories’ defined by mass and potential vorticity conservation

last_modified: 2023-06-20 16:00:00

license_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.es

license_type: by-nc-sa

No entro en nada

No entro en nada 2

Artículo

‘Preferred Trajectories’ defined by mass and potential vorticity conservation

Ochoa, José; Badan, Antonio; Sheinbaum, Julio; Castro, Jorge

Instituto de Geofísica, UNAM, publicado en Geofísica Internacional, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Instituto de Geofísica, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Ochoa, José, et al. (2020). ‘Preferred Trajectories’ defined by mass and potential vorticity conservation. Geofísica Internacional; Vol. 59 Núm. 3: Julio 1, 2020; 195-207. Recuperado de https://repositorio.unam.mx/contenidos/4132608

Descripción del recurso

Autor(es)
Ochoa, José; Badan, Antonio; Sheinbaum, Julio; Castro, Jorge
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
‘Preferred Trajectories’ defined by mass and potential vorticity conservation
Fecha
2020-07-01
Resumen
Most schemes to estimate ‘absolute’ geostrophic velocities, in the absence of actual velocity measurements, use directional constraints of the flow at different vertical levels. These constraints allow the determination, often as a least square problem, of the integration constants in the thermal-wind equation. Examples of such directions are those defined by the intersection of constant potential temperature and isohaline surfaces, which under appropriate approximation are material surfaces. Here we show that under adiabatic, non-diffusive, geostrophic, hydrostatic motions, but allowing for compressibility, hence the focus being on the large-scale circulation, a pair of orthogonality constraints, much closely related with dynamical balances than the conservation of potential temperature and salinity, yield a flow direction. These constraints are the conservation of ‘local’ potential density and potential vorticity, in their reduction consistent with such approximations. ‘Neutral’, ‘Orthobaric’, and ‘Topobaric’ surfaces are approximately material surfaces defined as a result of the conservation of ‘local’ potential density, but in order to build such global surfaces additional assumptions are required. The conservation constraint is an inexact differential equation that cannot define, uniquely, a global surface. Here we explicitly show that to define the flow direction, there is no need to build global surfaces out of inexact differentials, as would also be the case with the iso-potential vorticity surfaces, thus avoiding additional assumptions. The ‘Preferred Trajectories’ are then well-defined paths as integrals along this flow direction without being the intersection of global surfaces. Some examples are included for illustrative purposes. Further analysis including error propagation are beyond the scope of this work and left for future studies.doi: https://doi.org/10.22201/igeof.00167169p.2020.59.3.2094
Tema
circulación geostrófica de gran escala; compresibilidad; restricciones de dirección; superficies neutrales; large-scale geostrophic; compressibility; direction constraints; neutral surfaces
Idioma
spa
ISSN
ISSN-L: 2954-436X; ISSN impreso: 0016-7169

Enlaces