‘Preferred Trajectories’ defined by mass and potential vorticity conservation
Ochoa, José; Badan, Antonio; Sheinbaum, Julio; Castro, Jorge
Instituto de Geofísica, UNAM, publicado en Geofísica Internacional, y cosechado de Revistas UNAM
dor_id: 4102218
506.#.#.a: Público
590.#.#.d: Cada artículo es evaluado mediante una revisión ciega única. Los revisores son externos nacionales e internacionales.
510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT), Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex), Scientific Electronic Library Online (SciELO), SCOPUS, Web Of Science (WoS)
561.#.#.u: http://www.geofisica.unam.mx/
650.#.4.x: Físico Matemáticas y Ciencias de la Tierra
336.#.#.b: info:eu-repo/semantics/article
336.#.#.3: Artículo de Investigación
336.#.#.a: Artículo
351.#.#.6: http://revistagi.geofisica.unam.mx/index.php/RGI
351.#.#.b: Geofísica Internacional
351.#.#.a: Artículos
harvesting_group: RevistasUNAM
270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx
590.#.#.c: Open Journal Systems (OJS)
270.#.#.d: MX
270.1.#.d: México
590.#.#.b: Concentrador
883.#.#.u: http://www.revistas.unam.mx/front/
883.#.#.a: Revistas UNAM
590.#.#.a: Coordinación de Difusión Cultural
883.#.#.1: https://www.publicaciones.unam.mx/
883.#.#.q: Dirección General de Publicaciones y Fomento Editorial, UNAM
850.#.#.a: Universidad Nacional Autónoma de México
856.4.0.u: http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/2094/1759
100.1.#.a: Ochoa, José; Badan, Antonio; Sheinbaum, Julio; Castro, Jorge
524.#.#.a: Ochoa, José, et al. (2020). ‘Preferred Trajectories’ defined by mass and potential vorticity conservation. Geofísica Internacional; Vol. 59 No. 3, 2020; 195-207. Recuperado de https://repositorio.unam.mx/contenidos/4102218
245.1.0.a: ‘Preferred Trajectories’ defined by mass and potential vorticity conservation
502.#.#.c: Universidad Nacional Autónoma de México
561.1.#.a: Instituto de Geofísica, UNAM
264.#.0.c: 2020
264.#.1.c: 2020-07-01
653.#.#.a: large-scale geostrophic; compressibility; direction constraints; neutral surfaces; circulación geostrófica de gran escala; compresibilidad; restricciones de dirección; superficies neutrales
506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, fecha de asignación de la licencia 2020-07-01, para un uso diferente consultar al responsable jurídico del repositorio por medio de revistagi@igeofisica.unam.mx
884.#.#.k: http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/2094
001.#.#.#: oai:ojs.ojs.geofisica.unam.mx:article/2094
041.#.7.h: eng
520.3.#.a: Most schemes to estimate ‘absolute’ geostrophic velocities, in the absence of actual velocity measurements, use directional constraints of the flow at different vertical levels. These constraints allow the determination, often as a least square problem, of the integration constants in the thermal-wind equation. Examples of such directions are those defined by the intersection of constant potential temperature and isohaline surfaces, which under appropriate approximation are material surfaces. Here we show that under adiabatic, non-diffusive, geostrophic, hydrostatic motions, but allowing for compressibility, hence the focus being on the large-scale circulation, a pair of orthogonality constraints, much closely related with dynamical balances than the conservation of potential temperature and salinity, yield a flow direction. These constraints are the conservation of ‘local’ potential density and potential vorticity, in their reduction consistent with such approximations. ‘Neutral’, ‘Orthobaric’, and ‘Topobaric’ surfaces are approximately material surfaces defined as a result of the conservation of ‘local’ potential density, but in order to build such global surfaces additional assumptions are required. The conservation constraint is an inexact differential equation that cannot define, uniquely, a global surface. Here we explicitly show that to define the flow direction, there is no need to build global surfaces out of inexact differentials, as would also be the case with the iso-potential vorticity surfaces, thus avoiding additional assumptions. The ‘Preferred Trajectories’ are then well-defined paths as integrals along this flow direction without being the intersection of global surfaces. Some examples are included for illustrative purposes. Further analysis including error propagation are beyond the scope of this work and left for future studies.
773.1.#.t: Geofísica Internacional; Vol. 59 No. 3 (2020); 195-207
773.1.#.o: http://revistagi.geofisica.unam.mx/index.php/RGI
046.#.#.j: 2020-10-20 00:00:00.000000
022.#.#.a: 0016-7169
310.#.#.a: Trimestral
264.#.1.b: Instituto de Geofísica, UNAM
758.#.#.1: http://revistagi.geofisica.unam.mx/index.php/RGI
handle: 00c650ddb2ade5e1
harvesting_date: 2020-09-23 00:00:00.0
856.#.0.q: application/pdf
file_modification_date: 2020-09-17 20:30:12.0
last_modified: 2020-10-21 00:00:00
license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es
license_type: by-nc-nd
Ochoa, José; Badan, Antonio; Sheinbaum, Julio; Castro, Jorge
Instituto de Geofísica, UNAM, publicado en Geofísica Internacional, y cosechado de Revistas UNAM
Ochoa, José, et al. (2020). ‘Preferred Trajectories’ defined by mass and potential vorticity conservation. Geofísica Internacional; Vol. 59 No. 3, 2020; 195-207. Recuperado de https://repositorio.unam.mx/contenidos/4102218