dor_id: 41749

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la Revista Mexicana de Física se someten a un estricto proceso de revisión llevado a cabo por árbitros anónimos, independientes y especializados en todo el mundo.

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT), Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex), Scientific Electronic Library Online (SciELO), SCOPUS, Web Of Science (WoS)

561.#.#.u: http://www.fciencias.unam.mx/

650.#.4.x: Físico Matemáticas y Ciencias de la Tierra

336.#.#.b: info:eu-repo/semantics/article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: https://rmf.smf.mx/ojs/rmf/index

351.#.#.b: Revista Mexicana de Física

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: http://www.revistas.unam.mx/front/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: http://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial, UNAM

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: https://rmf.smf.mx/ojs/rmf/article/view/3465/3432

100.1.#.a: Puch, F.; Baquero, R.

524.#.#.a: Puch, F., et al. (2006). Optical conductivity the optical conductivity resonance from an exact description of the electronic states around the Fermi energy. Revista Mexicana de Física; Vol 52, No 4: 301-0. Recuperado de https://repositorio.unam.mx/contenidos/41749

245.1.0.a: Optical conductivity the optical conductivity resonance from an exact description of the electronic states around the Fermi energy

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Facultad de Ciencias, UNAM

264.#.0.c: 2006

264.#.1.c: 2006-01-01

653.#.#.a: Superconductivity, mechanism, YBaCuO, Optical Conductivity, resonante

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, fecha de asignación de la licencia 2006-01-01, para un uso diferente consultar al responsable jurídico del repositorio por medio de rmf@ciencias.unam.mx

884.#.#.k: https://rmf.smf.mx/ojs/rmf/article/view/3465

001.#.#.#: oai:ojs.rmf.smf.mx:article/3465

041.#.7.h: eng

520.3.#.a: In this paper we show that the optical conductivity can be calculated to agree with experiment if the details of the electronic states around the Fermi level are taken into account with some care. More precisely, we present a calculation of the optical conductivity in YBa 2 Cu 3 O 7on the basis of an exact (ab initio) three dimensional electronic band structure calculation from which we extract the information on the bands near the Fermi energy that can be associated with the CuO 2plane-carrier states. To simulate the superconducting state, we superimpose a gap on these bands alone. On these basis, from the known Kubo-Greenwood formula we calculate the optical conductivity in the normal and in the superconducting state. Our calculation agrees with the experimental result even in the higher part of the frequency spectrum. Our way of calculating the resonance suggests a model of evolution for the bands under the effect of doping consistent with the recent experimental findings that the optical resonance can disappear while the sample remains superconducting. An important conclusion of this paper is that the resonance depends mostly on the details of the electronic band structure. It is enough to take into account the effect of the superconducting transition through a single parameter (the gap). No details on the mechanism are needed, so no mechanism can be tested on this basis. Our calculation suggests a model of evolution for the bands around the Fermi energy under doping that gives some microscopic foundations to the recent experiments that show unambiguously that the resonance cannot be the cause of superconductivity. Most importantly, it indicates how the background is built up and depends on the electronic excitations accessible through values of the energy transfer on a wider interval than the one contributing directly to the resonance. These electronic excitations are determined by the optical transitions allowed. From this point of view, it is an obvious consequence that the background is with small differences, common to all the cuprates having a CuO 2plane. But the most important conclusion is that the background contains essentially the same physics as the resonance does, and so it does not have any detailed information on the superconducting mechanism as well, contrary to the conclusions of recent work.

773.1.#.t: Revista Mexicana de Física; Vol 52, No 4 (2006): 301-0

773.1.#.o: https://rmf.smf.mx/ojs/rmf/index

046.#.#.j: 2020-11-25 00:00:00.000000

022.#.#.a: 2683-2224 (digital); 0035-001X (impresa)

310.#.#.a: Bimestral

264.#.1.b: Sociedad Mexicana de Física, A.C.

758.#.#.1: https://rmf.smf.mx/ojs/rmf/index

handle: 00d511b40357b871

harvesting_date: 2020-09-23 00:00:00.0

856.#.0.q: application/pdf

last_modified: 2020-11-27 00:00:00

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

_deleted_conflicts: 6-cc87be5b380f83d818c29a365d394754,2-4586ff5e3513a59f958ebf0336540366

No entro en nada

No entro en nada 2

Artículo

Optical conductivity the optical conductivity resonance from an exact description of the electronic states around the Fermi energy

Puch, F.; Baquero, R.

Facultad de Ciencias, UNAM, publicado en Revista Mexicana de Física, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Facultad de Ciencias, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Puch, F., et al. (2006). Optical conductivity the optical conductivity resonance from an exact description of the electronic states around the Fermi energy. Revista Mexicana de Física; Vol 52, No 4: 301-0. Recuperado de https://repositorio.unam.mx/contenidos/41749

Descripción del recurso

Autor(es)
Puch, F.; Baquero, R.
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
Optical conductivity the optical conductivity resonance from an exact description of the electronic states around the Fermi energy
Fecha
2006-01-01
Resumen
In this paper we show that the optical conductivity can be calculated to agree with experiment if the details of the electronic states around the Fermi level are taken into account with some care. More precisely, we present a calculation of the optical conductivity in YBa 2 Cu 3 O 7on the basis of an exact (ab initio) three dimensional electronic band structure calculation from which we extract the information on the bands near the Fermi energy that can be associated with the CuO 2plane-carrier states. To simulate the superconducting state, we superimpose a gap on these bands alone. On these basis, from the known Kubo-Greenwood formula we calculate the optical conductivity in the normal and in the superconducting state. Our calculation agrees with the experimental result even in the higher part of the frequency spectrum. Our way of calculating the resonance suggests a model of evolution for the bands under the effect of doping consistent with the recent experimental findings that the optical resonance can disappear while the sample remains superconducting. An important conclusion of this paper is that the resonance depends mostly on the details of the electronic band structure. It is enough to take into account the effect of the superconducting transition through a single parameter (the gap). No details on the mechanism are needed, so no mechanism can be tested on this basis. Our calculation suggests a model of evolution for the bands around the Fermi energy under doping that gives some microscopic foundations to the recent experiments that show unambiguously that the resonance cannot be the cause of superconductivity. Most importantly, it indicates how the background is built up and depends on the electronic excitations accessible through values of the energy transfer on a wider interval than the one contributing directly to the resonance. These electronic excitations are determined by the optical transitions allowed. From this point of view, it is an obvious consequence that the background is with small differences, common to all the cuprates having a CuO 2plane. But the most important conclusion is that the background contains essentially the same physics as the resonance does, and so it does not have any detailed information on the superconducting mechanism as well, contrary to the conclusions of recent work.
Tema
Superconductivity, mechanism, YBaCuO, Optical Conductivity, resonante
Idioma
eng
ISSN
2683-2224 (digital); 0035-001X (impresa)

Enlaces