dor_id: 4161163

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la ""Revista Mexicana de Física"" se someten a un estricto proceso de revisión llevado a cabo por árbitros anónimos, independientes y especializados en todo el mundo"

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT); Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Scientific Electronic Library Online (SciELO); SCOPUS, Web Of Science (WoS)

561.#.#.u: http://www.fciencias.unam.mx/

650.#.4.x: Físico Matemáticas y Ciencias de la Tierra

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: https://rmf.smf.mx/ojs/index.php/rmf

351.#.#.b: Revista Mexicana de Física

351.#.#.a: Artículos

harvesting_group: RevistasUNAM.116

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: https://revistas.unam.mx/catalogo/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: https://rmf.smf.mx/ojs/index.php/rmf/article/view/7452/7057

100.1.#.a: Herrera Ortega, Mario; Ramos-Banderas, J. A.; Hernández-Bocanegra, C. A.; Beltrán, Alberto

524.#.#.a: Herrera Ortega, Mario, et al. (2025). Numerical simulation of electromagnetically driven flow and temperature distribution inside an electric arc furnace with two non-parallel electrodes. Revista Mexicana de Física; Vol. 71 Núm. 1 Jan-Feb, 2025. Recuperado de https://repositorio.unam.mx/contenidos/4161163

245.1.0.a: Numerical simulation of electromagnetically driven flow and temperature distribution inside an electric arc furnace with two non-parallel electrodes

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Facultad de Ciencias, UNAM

264.#.0.c: 2025

264.#.1.c: 2025-01-01

653.#.#.a: electric arc furnace; non-parallel electrodes; Joule heating; Lorentz force

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico rmf@ciencias.unam.mx

884.#.#.k: https://rmf.smf.mx/ojs/index.php/rmf/article/view/7452

001.#.#.#: 116.oai:ojs2.rmf.smf.mx:article/7452

041.#.7.h: eng

520.3.#.a: In this study, numerical simulations were performed for a three-dimensional computational fluid dynamics model to investigate the fluid dynamic, thermal, and magnetohydrodynamic behavior inside an electric arc furnace. Simulations consider the interaction of the multiphase flow involving steel, slag, and air, along with the induction of electric current through two non-parallel graphite electrodes. It accounts for heat transfer resulting from the Joule effect and the impact of the Lorentz force on the fluid dynamic pattern of steel. To validate the magnetic flux density generated by the electric current, experiments were conducted using a gaussmeter during the operation of an electric arc furnace. Results provide comprehensive insights into temperature, velocity, Joule heat, and Lorentz force fields to characterize the flow. The Lorentz force, arising from the interaction between electric current density and magnetic flux density has a maximum value of 164 N · m−3, and it was observed to counteract the movement of convective flow induced by buoyancy forces. This counteraction led to a reduction in velocity within the liquid steel of about 4%, consequently resulting in a more uniform temperature distribution throughout the liquid steel with a maximum temperature value significantly lower compared to the case that does not consider the contribution of the Lorentz force.

773.1.#.t: Revista Mexicana de Física; Vol. 71 Núm. 1 Jan-Feb (2025)

773.1.#.o: https://rmf.smf.mx/ojs/index.php/rmf

022.#.#.a: ISSN electrónico: 2683-2224; ISSN impreso: 0035-001X

310.#.#.a: Bimestral

599.#.#.a: 116

264.#.1.b: Facultad de Ciencias, UNAM; Sociedad Mexicana de Física

doi: https://doi.org/10.31349/RevMexFis.71.010603

harvesting_date: 2025-01-07 00:00:00.0

856.#.0.q: application/pdf

file_creation_date: 2024-12-05 18:31:51.0

file_name: e7bee6a97470a4fe53ebec406bee3367ea8aba58f39a27bcbe87c85154c05688.pdf

file_pages_number: 11

file_format_version: application/pdf; version=1.2

file_size: 1851832

last_modified: 2025-01-07 00:00:00

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

No entro en nada

No entro en nada 2

Artículo

Numerical simulation of electromagnetically driven flow and temperature distribution inside an electric arc furnace with two non-parallel electrodes

Herrera Ortega, Mario; Ramos-Banderas, J. A.; Hernández-Bocanegra, C. A.; Beltrán, Alberto

Facultad de Ciencias, UNAM, publicado en Revista Mexicana de Física, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Facultad de Ciencias, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Herrera Ortega, Mario, et al. (2025). Numerical simulation of electromagnetically driven flow and temperature distribution inside an electric arc furnace with two non-parallel electrodes. Revista Mexicana de Física; Vol. 71 Núm. 1 Jan-Feb, 2025. Recuperado de https://repositorio.unam.mx/contenidos/4161163

Descripción del recurso

Autor(es)
Herrera Ortega, Mario; Ramos-Banderas, J. A.; Hernández-Bocanegra, C. A.; Beltrán, Alberto
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
Numerical simulation of electromagnetically driven flow and temperature distribution inside an electric arc furnace with two non-parallel electrodes
Fecha
2025-01-01
Resumen
In this study, numerical simulations were performed for a three-dimensional computational fluid dynamics model to investigate the fluid dynamic, thermal, and magnetohydrodynamic behavior inside an electric arc furnace. Simulations consider the interaction of the multiphase flow involving steel, slag, and air, along with the induction of electric current through two non-parallel graphite electrodes. It accounts for heat transfer resulting from the Joule effect and the impact of the Lorentz force on the fluid dynamic pattern of steel. To validate the magnetic flux density generated by the electric current, experiments were conducted using a gaussmeter during the operation of an electric arc furnace. Results provide comprehensive insights into temperature, velocity, Joule heat, and Lorentz force fields to characterize the flow. The Lorentz force, arising from the interaction between electric current density and magnetic flux density has a maximum value of 164 N · m−3, and it was observed to counteract the movement of convective flow induced by buoyancy forces. This counteraction led to a reduction in velocity within the liquid steel of about 4%, consequently resulting in a more uniform temperature distribution throughout the liquid steel with a maximum temperature value significantly lower compared to the case that does not consider the contribution of the Lorentz force.
Tema
electric arc furnace; non-parallel electrodes; Joule heating; Lorentz force
Idioma
eng
ISSN
ISSN electrónico: 2683-2224; ISSN impreso: 0035-001X

Enlaces