
La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico rmf@ciencias.unam.mx.
Ver términos de la licenciaHerrera Ortega, Mario, et al. (2025). Numerical simulation of electromagnetically driven flow and temperature distribution inside an electric arc furnace with two non-parallel electrodes. Revista Mexicana de Física; Vol. 71 Núm. 1 Jan-Feb, 2025. Recuperado de https://repositorio.unam.mx/contenidos/4161163
Autor(es)
Herrera Ortega, Mario; Ramos-Banderas, J. A.; Hernández-Bocanegra, C. A.; Beltrán, Alberto
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
Numerical simulation of electromagnetically driven flow and temperature distribution inside an electric arc furnace with two non-parallel electrodes
Fecha
2025-01-01
Resumen
In this study, numerical simulations were performed for a three-dimensional computational fluid dynamics model to investigate the fluid dynamic, thermal, and magnetohydrodynamic behavior inside an electric arc furnace. Simulations consider the interaction of the multiphase flow involving steel, slag, and air, along with the induction of electric current through two non-parallel graphite electrodes. It accounts for heat transfer resulting from the Joule effect and the impact of the Lorentz force on the fluid dynamic pattern of steel. To validate the magnetic flux density generated by the electric current, experiments were conducted using a gaussmeter during the operation of an electric arc furnace. Results provide comprehensive insights into temperature, velocity, Joule heat, and Lorentz force fields to characterize the flow. The Lorentz force, arising from the interaction between electric current density and magnetic flux density has a maximum value of 164 N · m−3, and it was observed to counteract the movement of convective flow induced by buoyancy forces. This counteraction led to a reduction in velocity within the liquid steel of about 4%, consequently resulting in a more uniform temperature distribution throughout the liquid steel with a maximum temperature value significantly lower compared to the case that does not consider the contribution of the Lorentz force.
Tema
electric arc furnace; non-parallel electrodes; Joule heating; Lorentz force
Idioma
eng
ISSN
ISSN electrónico: 2683-2224; ISSN impreso: 0035-001X