dor_id: 11298

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la revista "Atmósfera", se juzgan por medio de un proceso de revisión por pares

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT); Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Scientific Electronic Library Online (SciELO); SCOPUS, Web Of Science (WoS); SCImago Journal Rank (SJR)

561.#.#.u: https://www.atmosfera.unam.mx/

650.#.4.x: Físico Matemáticas y Ciencias de la Tierra

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: https://www.revistascca.unam.mx/atm/index.php/atm/index

351.#.#.b: Atmósfera

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: https://revistas.unam.mx/catalogo/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: https://www.revistascca.unam.mx/atm/index.php/atm/article/view/ATM.2014.27.04.05/42483

100.1.#.a: Augustine, Shivan M.; Chetty, Naven

524.#.#.a: Augustine, Shivan M., et al. (2014). EXPERIMENTAL VERIFICATION OF THE TURBULENT EFFECTS ON LASER BEAM PROPAGATION IN SPACE. Atmósfera; Vol. 27 No. 4, 2014; 385-401. Recuperado de https://repositorio.unam.mx/contenidos/11298

245.1.0.a: EXPERIMENTAL VERIFICATION OF THE TURBULENT EFFECTS ON LASER BEAM PROPAGATION IN SPACE

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM

264.#.0.c: 2014

264.#.1.c: 2015-01-13

653.#.#.a: Rytov variance; thermal turbulence; Fried´s parameter; scintillation index; laser beam propagation; turbulence strength; Rytov variance; thermal turbulence; Fried´s parameter; scintillation index; laser beam propagation; turbulence strength

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC 4.0 Internacional, https://creativecommons.org/licenses/by-nc/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico editora@atmosfera.unam.mx

884.#.#.k: https://www.revistascca.unam.mx/atm/index.php/atm/article/view/ATM.2014.27.04.05

001.#.#.#: 022.oai:ojs.pkp.sfu.ca:article/45596

041.#.7.h: eng

520.3.#.a: In this work, we have modified an existing experimental setup to fully classify the thermal effects on a laser beam propagating in air. Improvements made to the setup include a new, more powerful laser, a precision designed turbulence delivery system, an imbedded pressure sensor, and a platform for height adjustability between the laser beam and the turbulence model. The setup was not only able to reproduce previous results exactly but also allowed new data for the turbulence strength C2n, the Rytov variance (scintillation) and the coherence diameter (Fried’s parameter) to be successfully measured. Analysis of the produced interferograms has been discussed using fast Fourier transforms. The results confirm, within the Kolmogorov regime, that phase and intensity fluctuations increase relative to temperature. The turbulent region exhibited very strong disturbances, in the range of 1.1 × 10–12 m–2/3 to 2.7 × 10–12 m–2/3. In spite of the strong turbulence strength, scintillation proved otherwise, since the condition for a weak turbulence environment was determined in the laboratory and a low scintillation index was to be expected. This is as a result of the relatively short propagation distances achieved in the laboratory. In the open atmosphere, path lengths extend over vast distances and in order for turbulent effects to be realized, the turbulence model must generate stronger turbulence. The model was, therefore, able to demonstrate its ability to fully quantify and determine the thermal turbulence effects on a propagating laser beam.

773.1.#.t: Atmósfera; Vol. 27 No. 4 (2014); 385-401

773.1.#.o: https://www.revistascca.unam.mx/atm/index.php/atm/index

046.#.#.j: 2021-10-20 00:00:00.000000

022.#.#.a: ISSN electrónico: 2395-8812; ISSN impreso: 0187-6236

310.#.#.a: Trimestral

300.#.#.a: Páginas: 385-401

264.#.1.b: Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM

doi: https://doi.org/10.20937/ATM.2014.27.04.05

handle: 0098354670a84475

harvesting_date: 2023-06-20 16:00:00.0

856.#.0.q: application/pdf

245.1.0.b: EXPERIMENTAL VERIFICATION OF THE TURBULENT EFFECTS ON LASER BEAM PROPAGATION IN SPACE

last_modified: 2023-06-20 16:00:00

license_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode.es

license_type: by-nc

_deleted_conflicts: 2-d52fd36c18e6ea9f36fad3135ce8c6d7

No entro en nada

No entro en nada 2

Artículo

EXPERIMENTAL VERIFICATION OF THE TURBULENT EFFECTS ON LASER BEAM PROPAGATION IN SPACE

Augustine, Shivan M.; Chetty, Naven

Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM, publicado en Atmósfera, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Augustine, Shivan M., et al. (2014). EXPERIMENTAL VERIFICATION OF THE TURBULENT EFFECTS ON LASER BEAM PROPAGATION IN SPACE. Atmósfera; Vol. 27 No. 4, 2014; 385-401. Recuperado de https://repositorio.unam.mx/contenidos/11298

Descripción del recurso

Autor(es)
Augustine, Shivan M.; Chetty, Naven
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
EXPERIMENTAL VERIFICATION OF THE TURBULENT EFFECTS ON LASER BEAM PROPAGATION IN SPACE
Fecha
2015-01-13
Resumen
In this work, we have modified an existing experimental setup to fully classify the thermal effects on a laser beam propagating in air. Improvements made to the setup include a new, more powerful laser, a precision designed turbulence delivery system, an imbedded pressure sensor, and a platform for height adjustability between the laser beam and the turbulence model. The setup was not only able to reproduce previous results exactly but also allowed new data for the turbulence strength C2n, the Rytov variance (scintillation) and the coherence diameter (Fried’s parameter) to be successfully measured. Analysis of the produced interferograms has been discussed using fast Fourier transforms. The results confirm, within the Kolmogorov regime, that phase and intensity fluctuations increase relative to temperature. The turbulent region exhibited very strong disturbances, in the range of 1.1 × 10–12 m–2/3 to 2.7 × 10–12 m–2/3. In spite of the strong turbulence strength, scintillation proved otherwise, since the condition for a weak turbulence environment was determined in the laboratory and a low scintillation index was to be expected. This is as a result of the relatively short propagation distances achieved in the laboratory. In the open atmosphere, path lengths extend over vast distances and in order for turbulent effects to be realized, the turbulence model must generate stronger turbulence. The model was, therefore, able to demonstrate its ability to fully quantify and determine the thermal turbulence effects on a propagating laser beam.
Tema
Rytov variance; thermal turbulence; Fried´s parameter; scintillation index; laser beam propagation; turbulence strength; Rytov variance; thermal turbulence; Fried´s parameter; scintillation index; laser beam propagation; turbulence strength
Idioma
eng
ISSN
ISSN electrónico: 2395-8812; ISSN impreso: 0187-6236

Enlaces