dor_id: 4115482

506.#.#.a: Público

590.#.#.d: Cada artículo es evaluado mediante una revisión ciega única. Los revisores son externos nacionales e internacionales.

510.0.#.a: Arts and Humanities Citation Index, Revistes Cientifiques de Ciencies Socials Humanitais (CARHUS Plus), Latinoamericanas en Ciencias Sociales y Humanidades (CLASE), Directory of Open Access Journals (DOAJ), European Reference Index for the Humanities (ERIH PLUS), Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex), SCOPUS, Journal Storage (JSTOR), The Philosopher’s Index, Ulrich’s Periodical Directory

561.#.#.u: http://www.filosoficas.unam.mx/

650.#.4.x: Artes y Humanidades

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: http://critica.filosoficas.unam.mx/index.php/critica

351.#.#.b: Crítica. Revista Hispanoamericana de Filosofía

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: http://www.revistas.unam.mx/front/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural, UNAM

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial, UNAM

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: http://critica.filosoficas.unam.mx/index.php/critica/article/view/813/783

100.1.#.a: Álvarez, Carlos

524.#.#.a: Álvarez, Carlos (1991). El continuo lineal. Intuición geométrica o construcción aritmética. Crítica. Revista Hispanoamericana de Filosofía; Vol 23 No 69, 1991; 83-99. Recuperado de https://repositorio.unam.mx/contenidos/4115482

245.1.0.a: El continuo lineal. Intuición geométrica o construcción aritmética

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Instituto de Investigaciones Filosóficas, UNAM

264.#.0.c: 1991

264.#.1.c: 2018-12-13

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, fecha de asignación de la licencia 2018-12-13, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico alberto@filosoficas.unam.mx

884.#.#.k: http://critica.filosoficas.unam.mx/index.php/critica/article/view/813

001.#.#.#: critica:oai:ojs2.132.248.184.97:article/813

041.#.7.h: spa

520.3.#.a: The question whether the different constructions for the linear continuum, given in the last century under that movement known as the period of "arithmetisation" of mathematical analysis, are based on new principles, or if they just describe in other words those geometrical properties already described in Books V and X of Euclid"s Elements. The question whether the algebraic contruction of the real numbers, within the theory of real fields, is able to describe l"essence de la continuité. The question whether the order type of the real numbers system is a categorical description. The question concerning the existence or non existence of other kinds of linear continua, such as Souslin"s line. The question of the "deep meaning" (in Gödel"s sense) of the continuum hypothesis. All these are questions raised out from this "very intuitive mathematical object", the linear continuum. The question whether the different constructions for the linear continuum, given in the last century under that movement known as the period of "arithmetisation" of mathematical analysis, are based on new principles, or if they just describe in other words those geometrical properties already described in Books V and X of Euclid"s Elements. The question whether the algebraic contruction of the real numbers, within the theory of real fields, is able to describe l"essence de la continuité. The question whether the order type of the real numbers system is a categorical description. The question concerning the existence or non existence of other kinds of linear continua, such as Souslin"s line. The question of the "deep meaning" (in Gödel"s sense) of the continuum hypothesis. All these are questions raised out from this "very intuitive mathematical object", the linear continuum.

773.1.#.t: Crítica. Revista Hispanoamericana de Filosofía; Vol 23 No 69 (1991); 83-99

773.1.#.o: http://critica.filosoficas.unam.mx/index.php/critica

046.#.#.j: 2021-09-28 00:00:00.000000

022.#.#.a: ISSN electrónico: 1870-4905; ISSN impreso: 0011-1503

310.#.#.a: Cuatrimestral

300.#.#.a: Páginas: 83-99

264.#.1.b: Instituto de Investigaciones Filosóficas, UNAM

758.#.#.1: http://critica.filosoficas.unam.mx/index.php/critica

doi: https://doi.org/10.22201/iifs.18704905e.1991.813

handle: 0089ed5af95da7c5

856.#.0.q: application/pdf

file_creation_date: 2010-10-22 17:16:24.0

file_modification_date: 2010-10-27 01:33:10.0

file_creator: Claudia Chavez

file_name: 1e2e41ca7f57c6d8c81c2ec458e88a3017bd38d599d3602a54ba409344c5f0b4.pdf

file_pages_number: 17

file_format_version: application/pdf; version=1.5

file_size: 216715

245.1.0.b: El continuo lineal. Intuición geométrica o construcción aritmética

last_modified: 2021-11-09 23:50:00

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

No entro en nada

No entro en nada 2

Artículo

El continuo lineal. Intuición geométrica o construcción aritmética

Álvarez, Carlos

Instituto de Investigaciones Filosóficas, UNAM, publicado en Crítica. Revista Hispanoamericana de Filosofía, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Cita

Álvarez, Carlos (1991). El continuo lineal. Intuición geométrica o construcción aritmética. Crítica. Revista Hispanoamericana de Filosofía; Vol 23 No 69, 1991; 83-99. Recuperado de https://repositorio.unam.mx/contenidos/4115482

Descripción del recurso

Autor(es)
Álvarez, Carlos
Tipo
Artículo de Investigación
Área del conocimiento
Artes y Humanidades
Título
El continuo lineal. Intuición geométrica o construcción aritmética
Fecha
2018-12-13
Resumen
The question whether the different constructions for the linear continuum, given in the last century under that movement known as the period of "arithmetisation" of mathematical analysis, are based on new principles, or if they just describe in other words those geometrical properties already described in Books V and X of Euclid"s Elements. The question whether the algebraic contruction of the real numbers, within the theory of real fields, is able to describe l"essence de la continuité. The question whether the order type of the real numbers system is a categorical description. The question concerning the existence or non existence of other kinds of linear continua, such as Souslin"s line. The question of the "deep meaning" (in Gödel"s sense) of the continuum hypothesis. All these are questions raised out from this "very intuitive mathematical object", the linear continuum. The question whether the different constructions for the linear continuum, given in the last century under that movement known as the period of "arithmetisation" of mathematical analysis, are based on new principles, or if they just describe in other words those geometrical properties already described in Books V and X of Euclid"s Elements. The question whether the algebraic contruction of the real numbers, within the theory of real fields, is able to describe l"essence de la continuité. The question whether the order type of the real numbers system is a categorical description. The question concerning the existence or non existence of other kinds of linear continua, such as Souslin"s line. The question of the "deep meaning" (in Gödel"s sense) of the continuum hypothesis. All these are questions raised out from this "very intuitive mathematical object", the linear continuum.
Idioma
spa
ISSN
ISSN electrónico: 1870-4905; ISSN impreso: 0011-1503

Enlaces