dor_id: 4149299
506.#.#.a: Público
590.#.#.d: Los artículos enviados a la revista "Journal of Applied Research and Technology", se juzgan por medio de un proceso de revisión por pares
510.0.#.a: Scopus, Directory of Open Access Journals (DOAJ); Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Indice de Revistas Latinoamericanas en Ciencias (Periódica); La Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Redalyc); Consejo Nacional de Ciencia y Tecnología (CONACyT); Google Scholar Citation
561.#.#.u: https://www.icat.unam.mx/
650.#.4.x: Ingenierías
336.#.#.b: article
336.#.#.3: Artículo de Investigación
336.#.#.a: Artículo
351.#.#.6: https://jart.icat.unam.mx/index.php/jart
351.#.#.b: Journal of Applied Research and Technology
351.#.#.a: Artículos
harvesting_group: RevistasUNAM
270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx
590.#.#.c: Open Journal Systems (OJS)
270.#.#.d: MX
270.1.#.d: México
590.#.#.b: Concentrador
883.#.#.u: https://revistas.unam.mx/catalogo/
883.#.#.a: Revistas UNAM
590.#.#.a: Coordinación de Difusión Cultural
883.#.#.1: https://www.publicaciones.unam.mx/
883.#.#.q: Dirección General de Publicaciones y Fomento Editorial
850.#.#.a: Universidad Nacional Autónoma de México
856.4.0.u: https://jart.icat.unam.mx/index.php/jart/article/view/1624/1030
100.1.#.a: Gutiérrez, Marcelo; Fava, Javier; Vorobioff, Juan; Checozzi, Federico; Ruch, Marta; Di fiore, Tomás
524.#.#.a: Gutiérrez, Marcelo, et al. (2023). Eddy Currents Assessment of Rail Cracks Using Artificial Neural Networks in a Laboratory Setup. Journal of Applied Research and Technology; Vol. 21 Núm. 5, 2023; 730-741. Recuperado de https://repositorio.unam.mx/contenidos/4149299
245.1.0.a: Eddy Currents Assessment of Rail Cracks Using Artificial Neural Networks in a Laboratory Setup
502.#.#.c: Universidad Nacional Autónoma de México
561.1.#.a: Instituto de Ciencias Aplicadas y Tecnología, UNAM
264.#.0.c: 2023
264.#.1.c: 2023-10-30
653.#.#.a: Eddy current testing; Flaw evaluation; Artificial neural network; Signal processing; Railway infrastructure; Head checks
506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico gabriel.ascanio@icat.unam.mx
884.#.#.k: https://jart.icat.unam.mx/index.php/jart/article/view/1624
001.#.#.#: 074.oai:ojs2.localhost:article/1624
041.#.7.h: eng
520.3.#.a: Although flaws associated with rolling contact fatigue (RCF) and the corresponding traffic induced damage, which are a cause of failure in railways, have been of great concern in railway system maintenance and safety strategies in many countries for at least two decades, this serious problem has not been yet adequately tackled in the Argentine railway system. The present upgrading activities undertaken in the Argentine railway system (in infrastructure and in rolling stock) are prompting the need for R&D in non-destructive testing techniques and procedures, to satisfy requirements of the new rolling stock and to ensure safe and economic operation of passengers and cargo. RCF damage appears as surface and near surface defects and grows into cracks which in time will propagate along the running surface and through the cross-section. Eddy current testing (ET) is a very efficient in-service inspection method for this task, the near field technique being especially recommended for ferromagnetic components. In the present paper, an artificial neural network (ANN) method for automatic classification of flaws with lift-off compensation is presented and tested. The tests consist on the ET evaluation of right angle artificial cracks on a rail calibration coupon; the depth of the cracks studied ranged from 1 to 7 mm. The technique permitted to compensate the weakening of the signals caused by the lift-off effect, allowing signal cracks classification with lift-off variations of up to 5.4 mm. The effect of crack skewness on the ET signals is also studied. Because the RCF cracks penetrate the rail at oblique angles, (10° to 30° to the rolling surface), an additional uncertainty component is added to the experiments if calibration is made with a piece having perpendicular cracks. In order to estimate this additional uncertainty on the ANN method presented here, further tests were made with a second calibration piece with cracks at 25° to the surface. Comparison of results showed that the peak to peak amplitudes for both types of cracks are not equivalent at all the tested depths.
773.1.#.t: Journal of Applied Research and Technology; Vol. 21 Núm. 5 (2023); 730-741
773.1.#.o: https://jart.icat.unam.mx/index.php/jart
022.#.#.a: ISSN electrónico: 2448-6736; ISSN: 1665-6423
310.#.#.a: Bimestral
300.#.#.a: Páginas: 730-741
264.#.1.b: Instituto de Ciencias Aplicadas y Tecnología, UNAM
doi: https://doi.org/10.22201/icat.24486736e.2023.21.5.1624
harvesting_date: 2023-11-08 13:10:00.0
856.#.0.q: application/pdf
file_creation_date: 2023-09-26 01:34:23.0
file_modification_date: 2023-09-26 01:34:32.0
file_creator: Yolanda G.G.
file_name: aad4eccce48e6851638509d34dace63258f529c2bc3f055dbe5f394e4e46b98d.pdf
file_pages_number: 12
file_format_version: application/pdf; version=1.6
file_size: 876950
last_modified: 2024-03-19 14:00:00
license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es
license_type: by-nc-nd
No entro en nada
No entro en nada 2