dor_id: 4149299

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la revista "Journal of Applied Research and Technology", se juzgan por medio de un proceso de revisión por pares

510.0.#.a: Scopus, Directory of Open Access Journals (DOAJ); Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Indice de Revistas Latinoamericanas en Ciencias (Periódica); La Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Redalyc); Consejo Nacional de Ciencia y Tecnología (CONACyT); Google Scholar Citation

561.#.#.u: https://www.icat.unam.mx/

650.#.4.x: Ingenierías

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: https://jart.icat.unam.mx/index.php/jart

351.#.#.b: Journal of Applied Research and Technology

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: https://revistas.unam.mx/catalogo/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: https://jart.icat.unam.mx/index.php/jart/article/view/1624/1030

100.1.#.a: Gutiérrez, Marcelo; Fava, Javier; Vorobioff, Juan; Checozzi, Federico; Ruch, Marta; Di fiore, Tomás

524.#.#.a: Gutiérrez, Marcelo, et al. (2023). Eddy Currents Assessment of Rail Cracks Using Artificial Neural Networks in a Laboratory Setup. Journal of Applied Research and Technology; Vol. 21 Núm. 5, 2023; 730-741. Recuperado de https://repositorio.unam.mx/contenidos/4149299

245.1.0.a: Eddy Currents Assessment of Rail Cracks Using Artificial Neural Networks in a Laboratory Setup

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Instituto de Ciencias Aplicadas y Tecnología, UNAM

264.#.0.c: 2023

264.#.1.c: 2023-10-30

653.#.#.a: Eddy current testing; Flaw evaluation; Artificial neural network; Signal processing; Railway infrastructure; Head checks

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico gabriel.ascanio@icat.unam.mx

884.#.#.k: https://jart.icat.unam.mx/index.php/jart/article/view/1624

001.#.#.#: 074.oai:ojs2.localhost:article/1624

041.#.7.h: eng

520.3.#.a: Although flaws associated with rolling contact fatigue (RCF) and the corresponding traffic induced damage, which are a cause of failure in railways, have been of great concern in railway system maintenance and safety strategies in many countries for at least two decades, this serious problem has not been yet adequately tackled in the Argentine railway system. The present upgrading activities undertaken in the Argentine railway system (in infrastructure and in rolling stock) are prompting the need for R&D in non-destructive testing techniques and procedures, to satisfy requirements of the new rolling stock and to ensure safe and economic operation of passengers and cargo. RCF damage appears as surface and near surface defects and grows into cracks which in time will propagate along the running surface and through the cross-section. Eddy current testing (ET) is a very efficient in-service inspection method for this task, the near field technique being especially recommended for ferromagnetic components. In the present paper, an artificial neural network (ANN) method for automatic classification of flaws with lift-off compensation is presented and tested. The tests consist on the ET evaluation of right angle artificial cracks on a rail calibration coupon; the depth of the cracks studied ranged from 1 to 7 mm. The technique permitted to compensate the weakening of the signals caused by the lift-off effect, allowing signal cracks classification with lift-off variations of up to 5.4 mm. The effect of crack skewness on the ET signals is also studied. Because the RCF cracks penetrate the rail at oblique angles, (10° to 30° to the rolling surface), an additional uncertainty component is added to the experiments if calibration is made with a piece having perpendicular cracks. In order to estimate this additional uncertainty on the ANN method presented here, further tests were made with a second calibration piece with cracks at 25° to the surface. Comparison of results showed that the peak to peak amplitudes for both types of cracks are not equivalent at all the tested depths.

773.1.#.t: Journal of Applied Research and Technology; Vol. 21 Núm. 5 (2023); 730-741

773.1.#.o: https://jart.icat.unam.mx/index.php/jart

022.#.#.a: ISSN electrónico: 2448-6736; ISSN: 1665-6423

310.#.#.a: Bimestral

300.#.#.a: Páginas: 730-741

264.#.1.b: Instituto de Ciencias Aplicadas y Tecnología, UNAM

doi: https://doi.org/10.22201/icat.24486736e.2023.21.5.1624

harvesting_date: 2023-11-08 13:10:00.0

856.#.0.q: application/pdf

file_creation_date: 2023-09-26 01:34:23.0

file_modification_date: 2023-09-26 01:34:32.0

file_creator: Yolanda G.G.

file_name: aad4eccce48e6851638509d34dace63258f529c2bc3f055dbe5f394e4e46b98d.pdf

file_pages_number: 12

file_format_version: application/pdf; version=1.6

file_size: 876950

last_modified: 2024-03-19 14:00:00

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

No entro en nada

No entro en nada 2

Artículo

Eddy Currents Assessment of Rail Cracks Using Artificial Neural Networks in a Laboratory Setup

Gutiérrez, Marcelo; Fava, Javier; Vorobioff, Juan; Checozzi, Federico; Ruch, Marta; Di fiore, Tomás

Instituto de Ciencias Aplicadas y Tecnología, UNAM, publicado en Journal of Applied Research and Technology, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Cita

Gutiérrez, Marcelo, et al. (2023). Eddy Currents Assessment of Rail Cracks Using Artificial Neural Networks in a Laboratory Setup. Journal of Applied Research and Technology; Vol. 21 Núm. 5, 2023; 730-741. Recuperado de https://repositorio.unam.mx/contenidos/4149299

Descripción del recurso

Autor(es)
Gutiérrez, Marcelo; Fava, Javier; Vorobioff, Juan; Checozzi, Federico; Ruch, Marta; Di fiore, Tomás
Tipo
Artículo de Investigación
Área del conocimiento
Ingenierías
Título
Eddy Currents Assessment of Rail Cracks Using Artificial Neural Networks in a Laboratory Setup
Fecha
2023-10-30
Resumen
Although flaws associated with rolling contact fatigue (RCF) and the corresponding traffic induced damage, which are a cause of failure in railways, have been of great concern in railway system maintenance and safety strategies in many countries for at least two decades, this serious problem has not been yet adequately tackled in the Argentine railway system. The present upgrading activities undertaken in the Argentine railway system (in infrastructure and in rolling stock) are prompting the need for R&D in non-destructive testing techniques and procedures, to satisfy requirements of the new rolling stock and to ensure safe and economic operation of passengers and cargo. RCF damage appears as surface and near surface defects and grows into cracks which in time will propagate along the running surface and through the cross-section. Eddy current testing (ET) is a very efficient in-service inspection method for this task, the near field technique being especially recommended for ferromagnetic components. In the present paper, an artificial neural network (ANN) method for automatic classification of flaws with lift-off compensation is presented and tested. The tests consist on the ET evaluation of right angle artificial cracks on a rail calibration coupon; the depth of the cracks studied ranged from 1 to 7 mm. The technique permitted to compensate the weakening of the signals caused by the lift-off effect, allowing signal cracks classification with lift-off variations of up to 5.4 mm. The effect of crack skewness on the ET signals is also studied. Because the RCF cracks penetrate the rail at oblique angles, (10° to 30° to the rolling surface), an additional uncertainty component is added to the experiments if calibration is made with a piece having perpendicular cracks. In order to estimate this additional uncertainty on the ANN method presented here, further tests were made with a second calibration piece with cracks at 25° to the surface. Comparison of results showed that the peak to peak amplitudes for both types of cracks are not equivalent at all the tested depths.
Tema
Eddy current testing; Flaw evaluation; Artificial neural network; Signal processing; Railway infrastructure; Head checks
Idioma
eng
ISSN
ISSN electrónico: 2448-6736; ISSN: 1665-6423

Enlaces