Deep Learning Based Leaf Disease Classification
Kokate, Jayesh Krishnarao; Kumar, Sunil; Kulkarni, Anant G
Instituto de Ciencias Aplicadas y Tecnología, UNAM, publicado en Journal of Applied Research and Technology, y cosechado de Revistas UNAM
dor_id: 4148923
506.#.#.a: Público
590.#.#.d: Los artículos enviados a la revista "Journal of Applied Research and Technology", se juzgan por medio de un proceso de revisión por pares
510.0.#.a: Scopus, Directory of Open Access Journals (DOAJ); Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Indice de Revistas Latinoamericanas en Ciencias (Periódica); La Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Redalyc); Consejo Nacional de Ciencia y Tecnología (CONACyT); Google Scholar Citation
561.#.#.u: https://www.icat.unam.mx/
650.#.4.x: Ingenierías
336.#.#.b: article
336.#.#.3: Artículo de Investigación
336.#.#.a: Artículo
351.#.#.6: https://jart.icat.unam.mx/index.php/jart
351.#.#.b: Journal of Applied Research and Technology
351.#.#.a: Artículos
harvesting_group: RevistasUNAM
270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx
590.#.#.c: Open Journal Systems (OJS)
270.#.#.d: MX
270.1.#.d: México
590.#.#.b: Concentrador
883.#.#.u: https://revistas.unam.mx/catalogo/
883.#.#.a: Revistas UNAM
590.#.#.a: Coordinación de Difusión Cultural
883.#.#.1: https://www.publicaciones.unam.mx/
883.#.#.q: Dirección General de Publicaciones y Fomento Editorial
850.#.#.a: Universidad Nacional Autónoma de México
856.4.0.u: https://jart.icat.unam.mx/index.php/jart/article/view/2026/1034
100.1.#.a: Kokate, Jayesh Krishnarao; Kumar, Sunil; Kulkarni, Anant G
524.#.#.a: Kokate, Jayesh Krishnarao, et al. (2023). Deep Learning Based Leaf Disease Classification. Journal of Applied Research and Technology; Vol. 21 Núm. 5, 2023; 764-771. Recuperado de https://repositorio.unam.mx/contenidos/4148923
245.1.0.a: Deep Learning Based Leaf Disease Classification
502.#.#.c: Universidad Nacional Autónoma de México
561.1.#.a: Instituto de Ciencias Aplicadas y Tecnología, UNAM
264.#.0.c: 2023
264.#.1.c: 2023-10-30
653.#.#.a: CNN; Plant diseases; Computer vision; classification
506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico gabriel.ascanio@icat.unam.mx
884.#.#.k: https://jart.icat.unam.mx/index.php/jart/article/view/2026
001.#.#.#: 074.oai:ojs2.localhost:article/2026
041.#.7.h: eng
520.3.#.a: A plant in its healthy state can produce its crops to the utmost of its genetically defined potential. However, on the other hand, a plant which is infected by an infection causing agent which directly or indirectly interferes with the plants’ growth or its functioning. A disease may interfere several processes in a plant’s metabolism. Continuous manual monitoring of farm and leaves of the trees by an expert is not possible, as it would be very expensive and time-consuming. Identification of correct disease accurately when it first appears on the plant is a decisive footstep for proper managing and diseases control in fields. Thus, an automated way of identifying the diseases and accurate classification of disease will play an important role in taking appropriate action for stopping the further crop and yield damage. This paper presents a Xception model of deep learning for identification and classification of the leaf diseases, average accuracy of 98% is resulted in this work. Xception model is utilised in this work and results are presented in terms of precision, recall, and f1-score for the 11 disease classes of tomato leaf.
773.1.#.t: Journal of Applied Research and Technology; Vol. 21 Núm. 5 (2023); 764-771
773.1.#.o: https://jart.icat.unam.mx/index.php/jart
022.#.#.a: ISSN electrónico: 2448-6736; ISSN: 1665-6423
310.#.#.a: Bimestral
300.#.#.a: Páginas: 764-771
264.#.1.b: Instituto de Ciencias Aplicadas y Tecnología, UNAM
doi: https://doi.org/10.22201/icat.24486736e.2023.21.5.2026
harvesting_date: 2023-11-08 13:10:00.0
856.#.0.q: application/pdf
file_creation_date: 2023-10-09 21:24:55.0
file_modification_date: 2023-10-09 21:24:59.0
file_creator: Yolanda G.G.
file_name: 8389dfc878bcf701d52c2592f4a52729a2870dce3a7b1955386536f109c33514.pdf
file_pages_number: 8
file_format_version: application/pdf; version=1.6
file_size: 845317
last_modified: 2024-03-19 14:00:00
license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es
license_type: by-nc-nd
Kokate, Jayesh Krishnarao; Kumar, Sunil; Kulkarni, Anant G
Instituto de Ciencias Aplicadas y Tecnología, UNAM, publicado en Journal of Applied Research and Technology, y cosechado de Revistas UNAM
Kokate, Jayesh Krishnarao, et al. (2023). Deep Learning Based Leaf Disease Classification. Journal of Applied Research and Technology; Vol. 21 Núm. 5, 2023; 764-771. Recuperado de https://repositorio.unam.mx/contenidos/4148923