dor_id: 4119360

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la Revista Investigaciones Geográficas se juzgan por medio de un proceso de revisión por pares

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT), Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex), Scientific Electronic Library Online (SciELO), SCOPUS, Scimago Journal Rank (SJR), Bibliografía Latinoamericana en revistas de Investigación Científica y social (BIBLAT), Science Direct (Elsevier), Directory of Open Access Journals (DOAJ), Geographical Abstracts, Current, Geographical Publications, GeoDados

561.#.#.u: http://www.igeograf.unam.mx/

650.#.4.x: Ciencias Sociales y Económicas

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: http://www.investigacionesgeograficas.unam.mx/index.php/rig/index

351.#.#.b: Investigaciones Geográficas

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: http://www.revistas.unam.mx/front/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural, UNAM

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial, UNAM

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: http://www.investigacionesgeograficas.unam.mx/index.php/rig/article/view/60178/54180

100.1.#.a: Coelho Junior, Francisco Antonio; Marques Quinteiro, Pedro; Faiad, Cristiane

524.#.#.a: Coelho Junior, Francisco Antonio, et al. (2021). COVID-19: Do weather conditions influence the transmission of the coronavirus (SARS-CoV-2) in Brasília and Manaus, Brazil?. Investigaciones Geográficas; Núm. 104;, 2021. Recuperado de https://repositorio.unam.mx/contenidos/4119360

245.1.0.a: COVID-19: Do weather conditions influence the transmission of the coronavirus (SARS-CoV-2) in Brasília and Manaus, Brazil?

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Instituto de Geografía, UNAM

264.#.0.c: 2021

264.#.1.c: 2021-02-25

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC 4.0 Internacional, https://creativecommons.org/licenses/by-nc/4.0/legalcode.es, fecha de asignación de la licencia 2021-02-25, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico dianachg@igg.unam.mx

884.#.#.k: http://www.investigacionesgeograficas.unam.mx/index.php/rig/article/view/60178

001.#.#.#: oai:ojs.pkp.sfu.ca:article/60178

041.#.7.h: eng

520.3.#.a: The global outbreak of coronavirus SARS-CoV-2 (COVID-19) disease is affecting every part of human lives. Several researchers investigated to understand how temperature, humidity and air pollution had an influence on COVID-19 transmission. Transmission of COVID-19 due to temperature and humidity is a pertinent question. There is a lack of study of Covid-19 in tropical climate countries. This study aims to analyze the correlation between weather and Covid-19 pandemic in Brasília and Manaus, two states of Brazil. The research topic is important to know how the climate affects or predisposes the spread of COVID-19. This knowledge will provide elements to decision-makers regarding health and public health standards and decisions. This study employed a secondary data analysis of surveillance data of Covid-19 from the Ministry of Health of Brazil and weather from the National Institute of Meteorology of Brazil. These are Brazilian public organizations that, on a daily basis, record this information on a systematic basis of dates. They are central federal organizations, responsible for data analysis and public policy planning to combat Covid-19. The data are reliables and obtained from reliable government sources. We systematically record all information for 51 days, during a period of high disease growth in the country. The components of weather include low temperature (°C), high temperature (°C), temperature average (°C), humidity (%), and amount of rainfall (mm). Pearson-rank correlation test showed that high temperature (r=.643; p<.001), low temperature (r=.640; p<.001) and humidity (r=.248; p<.005) were significantly correlated with deaths caused by Covid-19 pandemic used for data analysis. Social isolation rate (β = -.254; p<.001) and daily record of new cases (β = .332; p<.001), with adjusted R-squared of .623, were the predictors of deaths acummuled by Covid-19. The finding serves as an input to reduce the incidence rate of Covid-19 in Brazil. Statistical results show evidence of the relationship between climate elements and COVID-19 indicators, such as the number of deaths, spread of contamination and social isolation rate. The study of dimensions of climate as a seasonal pattern and its relationship to COVID-19 benefits epidemiological surveillance. The more geographic spaces are known, more will help to understand the differences in disease behavior in different places. The results of this research showed that environmental conditions influence the contagion and speed of transmission of Covid-19. Policies that contribute to benefits to health and sustainability need to be planned. The contribution of climate and other factors, such as air pollution, for example, require additional studies. Environmental changes, such as climate change and biodiversity, must also be investigated for their impact on human health. Acting in prevention, including the promotion of socially acceptable behaviors on the part of the population, seems to be the best way to deal with Covid-19. El brote mundial de la enfermedad por SARS-CoV-2 (COVID-19) está afectando todos los aspectos de la vida humana. Este estudio tiene como objetivo analizar la correlación entre factores del clima y la pandemia de Covid-19 en Brasilia y Manaos, dos estados de Brasil. El tema de investigación es importante para conocer cómo el clima afecta o predispone el contagio por COVID-19. Y aporta elementos a los tomadores de decisiones en cuanto a normas y decisiones sanitarias y de salud pública. Se empleó un análisis de datos secundarios de datos de vigilancia de COVID-19 del Ministerio de Salud de Brasil y el clima del Instituto Nacional de Meteorología de Brasil. Se registró sistemáticamente toda la información durante 51 días, durante un período de alto crecimiento de la enfermedad en el país. Los componentes del clima incluyen baja temperatura (°C), alta temperatura (°C), temperatura promedio (°C), humedad (%) y cantidad de lluvia (mm). La prueba de correlación de rango de Pearson mostró que la temperatura alta (r = .643; p <.001), la temperatura baja (r = .640; p <.001) y la humedad (r = .248; p <.005) se correlacionaron significativamente con muertes causadas por la pandemia de Covid-19 utilizada para el análisis de datos. La tasa de aislamiento social (β = -.254; p <.001) y el registro diario de nuevos casos (β = .332; p <.001), con un R cuadrado ajustado de .623, fueron los predictores de muertes acumuladas por COVID -19.

773.1.#.t: Investigaciones Geográficas; Núm. 104; (2021)

773.1.#.o: http://www.investigacionesgeograficas.unam.mx/index.php/rig/index

046.#.#.j: 2021-10-20 00:00:00.000000

022.#.#.a: ISSN electrónico: 2448-7279; ISSN impreso: 0188-4611

310.#.#.a: Cuatrimestral

264.#.1.b: Instituto de Geografía, UNAM

758.#.#.1: http://www.investigacionesgeograficas.unam.mx/index.php/rig/index

doi: https://doi.org/10.14350/rig.60178

856.#.0.q: application/pdf

file_creation_date: 2021-03-24 18:55:09.0

file_modification_date: 2021-03-24 18:55:11.0

file_name: 11a0c99dc575989f2ee3340e177f79239f0bc6cff6b6e3ffe7047d92ff6f0055.pdf

file_pages_number: 15

file_format_version: application/pdf; version=1.4

file_size: 592870

245.1.0.b: Covid-19: ¿las condiciones climáticas influyen en la transmisión del coronavirus (sars-cov-2) en Brasilia y manaus, Brasil?

last_modified: 2021-11-09 13:10:00

license_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode.es

license_type: by-nc

No entro en nada

No entro en nada 2

Artículo

COVID-19: Do weather conditions influence the transmission of the coronavirus (SARS-CoV-2) in Brasília and Manaus, Brazil?

Coelho Junior, Francisco Antonio; Marques Quinteiro, Pedro; Faiad, Cristiane

Instituto de Geografía, UNAM, publicado en Investigaciones Geográficas, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Instituto de Geografía, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Coelho Junior, Francisco Antonio, et al. (2021). COVID-19: Do weather conditions influence the transmission of the coronavirus (SARS-CoV-2) in Brasília and Manaus, Brazil?. Investigaciones Geográficas; Núm. 104;, 2021. Recuperado de https://repositorio.unam.mx/contenidos/4119360

Descripción del recurso

Autor(es)
Coelho Junior, Francisco Antonio; Marques Quinteiro, Pedro; Faiad, Cristiane
Tipo
Artículo de Investigación
Área del conocimiento
Ciencias Sociales y Económicas
Título
COVID-19: Do weather conditions influence the transmission of the coronavirus (SARS-CoV-2) in Brasília and Manaus, Brazil?
Fecha
2021-02-25
Resumen
The global outbreak of coronavirus SARS-CoV-2 (COVID-19) disease is affecting every part of human lives. Several researchers investigated to understand how temperature, humidity and air pollution had an influence on COVID-19 transmission. Transmission of COVID-19 due to temperature and humidity is a pertinent question. There is a lack of study of Covid-19 in tropical climate countries. This study aims to analyze the correlation between weather and Covid-19 pandemic in Brasília and Manaus, two states of Brazil. The research topic is important to know how the climate affects or predisposes the spread of COVID-19. This knowledge will provide elements to decision-makers regarding health and public health standards and decisions. This study employed a secondary data analysis of surveillance data of Covid-19 from the Ministry of Health of Brazil and weather from the National Institute of Meteorology of Brazil. These are Brazilian public organizations that, on a daily basis, record this information on a systematic basis of dates. They are central federal organizations, responsible for data analysis and public policy planning to combat Covid-19. The data are reliables and obtained from reliable government sources. We systematically record all information for 51 days, during a period of high disease growth in the country. The components of weather include low temperature (°C), high temperature (°C), temperature average (°C), humidity (%), and amount of rainfall (mm). Pearson-rank correlation test showed that high temperature (r=.643; p<.001), low temperature (r=.640; p<.001) and humidity (r=.248; p<.005) were significantly correlated with deaths caused by Covid-19 pandemic used for data analysis. Social isolation rate (β = -.254; p<.001) and daily record of new cases (β = .332; p<.001), with adjusted R-squared of .623, were the predictors of deaths acummuled by Covid-19. The finding serves as an input to reduce the incidence rate of Covid-19 in Brazil. Statistical results show evidence of the relationship between climate elements and COVID-19 indicators, such as the number of deaths, spread of contamination and social isolation rate. The study of dimensions of climate as a seasonal pattern and its relationship to COVID-19 benefits epidemiological surveillance. The more geographic spaces are known, more will help to understand the differences in disease behavior in different places. The results of this research showed that environmental conditions influence the contagion and speed of transmission of Covid-19. Policies that contribute to benefits to health and sustainability need to be planned. The contribution of climate and other factors, such as air pollution, for example, require additional studies. Environmental changes, such as climate change and biodiversity, must also be investigated for their impact on human health. Acting in prevention, including the promotion of socially acceptable behaviors on the part of the population, seems to be the best way to deal with Covid-19. El brote mundial de la enfermedad por SARS-CoV-2 (COVID-19) está afectando todos los aspectos de la vida humana. Este estudio tiene como objetivo analizar la correlación entre factores del clima y la pandemia de Covid-19 en Brasilia y Manaos, dos estados de Brasil. El tema de investigación es importante para conocer cómo el clima afecta o predispone el contagio por COVID-19. Y aporta elementos a los tomadores de decisiones en cuanto a normas y decisiones sanitarias y de salud pública. Se empleó un análisis de datos secundarios de datos de vigilancia de COVID-19 del Ministerio de Salud de Brasil y el clima del Instituto Nacional de Meteorología de Brasil. Se registró sistemáticamente toda la información durante 51 días, durante un período de alto crecimiento de la enfermedad en el país. Los componentes del clima incluyen baja temperatura (°C), alta temperatura (°C), temperatura promedio (°C), humedad (%) y cantidad de lluvia (mm). La prueba de correlación de rango de Pearson mostró que la temperatura alta (r = .643; p <.001), la temperatura baja (r = .640; p <.001) y la humedad (r = .248; p <.005) se correlacionaron significativamente con muertes causadas por la pandemia de Covid-19 utilizada para el análisis de datos. La tasa de aislamiento social (β = -.254; p <.001) y el registro diario de nuevos casos (β = .332; p <.001), con un R cuadrado ajustado de .623, fueron los predictores de muertes acumuladas por COVID -19.
Idioma
eng
ISSN
ISSN electrónico: 2448-7279; ISSN impreso: 0188-4611

Enlaces