dor_id: 4132564

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la revista "Geofísica Internacional", se juzgan por medio de un proceso de revisión por pares

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT); Scientific Electronic Library Online (SciELO); SCOPUS, Dialnet, Directory of Open Access Journals (DOAJ); Geobase

561.#.#.u: https://www.geofisica.unam.mx/

650.#.4.x: Físico Matemáticas y Ciencias de la Tierra

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: http://revistagi.geofisica.unam.mx/index.php/RGI

351.#.#.b: Geofísica Internacional

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: https://revistas.unam.mx/catalogo/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/299/287

100.1.#.a: Simuta-champo, R.; Herrera-zamarrón, Graciela Del Socorro

524.#.#.a: Simuta-champo, R., et al. (2010). Convergence analysis for Latin-hypercube lattice-sample selection strategies for 3D correlated random hydraulic-conductivity fields. Geofísica Internacional; Vol. 49 Núm. 3: Julio 1, 2010; 131-140. Recuperado de https://repositorio.unam.mx/contenidos/4132564

245.1.0.a: Convergence analysis for Latin-hypercube lattice-sample selection strategies for 3D correlated random hydraulic-conductivity fields

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Instituto de Geofísica, UNAM

264.#.0.c: 2010

264.#.1.c: 2010-07-01

653.#.#.a: Simulación Monte Carlo; conductividad hidráulica; simulación estocástoca; incertidumbre; muestreo por hipercubo latino; simulación secuencial gaussiana; Monte Carlo simulation; hydraulic conductivity; stochastic simulation; uncertainty; latin hypercube sampling; sequential Gaussian simulation

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-SA 4.0 Internacional, https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico revistagi@igeofisica.unam.mx

884.#.#.k: http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/299

001.#.#.#: 063.oai:revistagi.geofisica.unam.mx:article/299

041.#.7.h: spa

520.3.#.a: The Monte Carlo technique provides a natural method for evaluating uncertainties. The uncertainty is represented by a probability distribution or by related quantities such as statistical moments. When the groundwater flow and transport governing equations are solved and the hydraulic conductivity field is treated as a random spatial function, the hydraulic head, velocities and concentrations also become random spatial functions. When that is the case, for the stochastic simulation of groundwater flow and transport it is necessary to obtain realizations of the hydraulic conductivity. For this reason, the next question arises, how many hydraulic conductivity realizations are necessary to get a good representation of the quantities relevant in a given problem? Different methods require different number of realizations and it is relevant to work with the one that reduces the computational effort the most. Zhang and Pinder (2003) proposed a specific case of the latin hypercube sampling (LHS) method called the lattice sampling technique for the generation of Monte Carlo realizations that resulted in a reduction in the computational effort required to achieve a reliable random field simulation of groundwater flow and transport. They compared the LHS method with three other random field generation algorithms: sequential Gaussian simulation, turning bands and LU decomposition. To compare the methods they presented a two-dimensional example problem. In this paper we report a test of the LHS method in a three dimensional random hydraulic conductivity field. We present two example problems, in the first problem an exponential covariance function is assumed and in the second problem a spherical covariance one. The LHS is compared with the sequential Gaussian simulation available in GSLIB (Deutsch and Journel, 1998).doi: https://doi.org/10.22201/igeof.00167169p.2010.49.3.109

773.1.#.t: Geofísica Internacional; Vol. 49 Núm. 3: Julio 1, 2010; 131-140

773.1.#.o: http://revistagi.geofisica.unam.mx/index.php/RGI

022.#.#.a: ISSN-L: 2954-436X; ISSN impreso: 0016-7169

310.#.#.a: Trimestral

300.#.#.a: Páginas: 131-140

264.#.1.b: Instituto de Geofísica, UNAM

doi: https://doi.org/10.22201/igeof.00167169p.2010.49.3.109

handle: 2eb953432feea108

harvesting_date: 2023-06-20 16:00:00.0

856.#.0.q: application/pdf

file_creation_date: 2010-06-17 15:42:35.0

file_modification_date: 2022-06-03 22:12:09.0

file_creator: R. Simuta-Champo

file_name: 80836e1fb6e8a8e6b8b249b2a10deb25c8c966f341f91b4b0495ebcabd1d4a13.pdf

file_pages_number: 10

file_format_version: application/pdf; version=1.4

file_size: 531700

245.1.0.b: Convergence analysis for Latin-hypercube lattice-sample selection strategies for 3D correlated random hydraulic-conductivity fields

last_modified: 2023-06-20 16:00:00

license_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.es

license_type: by-nc-sa

No entro en nada

No entro en nada 2

Artículo

Convergence analysis for Latin-hypercube lattice-sample selection strategies for 3D correlated random hydraulic-conductivity fields

Simuta-champo, R.; Herrera-zamarrón, Graciela Del Socorro

Instituto de Geofísica, UNAM, publicado en Geofísica Internacional, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Instituto de Geofísica, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Simuta-champo, R., et al. (2010). Convergence analysis for Latin-hypercube lattice-sample selection strategies for 3D correlated random hydraulic-conductivity fields. Geofísica Internacional; Vol. 49 Núm. 3: Julio 1, 2010; 131-140. Recuperado de https://repositorio.unam.mx/contenidos/4132564

Descripción del recurso

Autor(es)
Simuta-champo, R.; Herrera-zamarrón, Graciela Del Socorro
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
Convergence analysis for Latin-hypercube lattice-sample selection strategies for 3D correlated random hydraulic-conductivity fields
Fecha
2010-07-01
Resumen
The Monte Carlo technique provides a natural method for evaluating uncertainties. The uncertainty is represented by a probability distribution or by related quantities such as statistical moments. When the groundwater flow and transport governing equations are solved and the hydraulic conductivity field is treated as a random spatial function, the hydraulic head, velocities and concentrations also become random spatial functions. When that is the case, for the stochastic simulation of groundwater flow and transport it is necessary to obtain realizations of the hydraulic conductivity. For this reason, the next question arises, how many hydraulic conductivity realizations are necessary to get a good representation of the quantities relevant in a given problem? Different methods require different number of realizations and it is relevant to work with the one that reduces the computational effort the most. Zhang and Pinder (2003) proposed a specific case of the latin hypercube sampling (LHS) method called the lattice sampling technique for the generation of Monte Carlo realizations that resulted in a reduction in the computational effort required to achieve a reliable random field simulation of groundwater flow and transport. They compared the LHS method with three other random field generation algorithms: sequential Gaussian simulation, turning bands and LU decomposition. To compare the methods they presented a two-dimensional example problem. In this paper we report a test of the LHS method in a three dimensional random hydraulic conductivity field. We present two example problems, in the first problem an exponential covariance function is assumed and in the second problem a spherical covariance one. The LHS is compared with the sequential Gaussian simulation available in GSLIB (Deutsch and Journel, 1998).doi: https://doi.org/10.22201/igeof.00167169p.2010.49.3.109
Tema
Simulación Monte Carlo; conductividad hidráulica; simulación estocástoca; incertidumbre; muestreo por hipercubo latino; simulación secuencial gaussiana; Monte Carlo simulation; hydraulic conductivity; stochastic simulation; uncertainty; latin hypercube sampling; sequential Gaussian simulation
Idioma
spa
ISSN
ISSN-L: 2954-436X; ISSN impreso: 0016-7169

Enlaces