dor_id: 1501057

506.#.#.a: Público

650.#.4.x: Biología y Química

336.#.#.b: other

336.#.#.3: Registro de colección de proyectos

336.#.#.a: Registro de colección universitaria

351.#.#.b: Proyectos Universitarios PAPIIT (PAPIIT)

351.#.#.a: Colecciones Universitarias Digitales

harvesting_group: ColeccionesUniversitarias

270.1.#.p: Dirección General de Repositorios Universitarios. contacto@dgru.unam.mx

590.#.#.c: Otro

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: https://datosabiertos.unam.mx/

883.#.#.a: Portal de Datos Abiertos UNAM, Colecciones Universitarias

590.#.#.a: Administración central

883.#.#.1: http://www.ccud.unam.mx/

883.#.#.q: Dirección General de Repositorios Universitarios

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: http://datosabiertos.unam.mx/DGAPA:PAPIIT:IN206412

100.1.#.a:

524.#.#.a: Dirección de Desarrollo Académico, Dirección General de Asuntos del Personal Académico (DGAPA). "Control of microbial gene expression by extra-cellular Stimulli", Proyectos Universitarios PAPIIT (PAPIIT). En "Portal de datos abiertos UNAM" (en línea), México, Universidad Nacional Autónoma de México.

245.1.0.a: Control of microbial gene expression by extra-cellular Stimulli

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Instituto de Fisiología Celular, UNAM

264.#.0.c: 2012

264.#.1.c: 2012

307.#.#.a: 2019-05-23 18:40:21.491

653.#.#.a: Biología molecular; Bioquímica, biología molecular, genética y genómica

506.1.#.a: La titularidad de los derechos patrimoniales de este recurso digital pertenece a la Universidad Nacional Autónoma de México. Su uso se rige por una licencia Creative Commons BY 4.0 Internacional, https://creativecommons.org/licenses/by/4.0/legalcode.es, fecha de asignación de la licencia 2012, para un uso diferente consultar al responsable jurídico del repositorio por medio de contacto@dgru.unam.mx

041.#.7.h: spa

500.#.#.a: ABSTRACT_x000D_ Facultative anaerobes, such as Escherichia coli, possess a genetic regulatory network to capitalize on the best mode of energy extraction under different environments. The most efficient mode is aerobic respiration. Expression of many genes in this process is controlled by the ArcA/B two-component regulatory system. This system comprises the ArcB protein, a complex membrane-associated sensor kinase having kinase, phospotransfer and kinase activity, and the ArcA protein, a typical response regulator controlling more than 300 operons. Under reducing conditions, ArcB autophosphorylates by using ATP through an intramolecular reaction, a process enhanced by certain anaerobic metabolites, such as D-lactate and acetate. The phosphoryl group is then transferred to ArcA via an ArcBHis292-P→ArcBAsp576-P→ArcBHis717-P→ArcAAsp54-P phosphorelay, and activates it as a transcriptional regulator. When oxygen becomes available, the oxidized forms of the quinone electron carriers act as ArcB-specific signals that silence the kinase activity of ArcB. The molecular mechanism for kinase silencing involves the oxidation of two cytosol-located redox-active cysteine residues (Cys-180 and Cys-241) that participate in intermolecular disulfide bond formation. Furthermore, dephosphosphorylation of ArcA-P, a reaction needed to curtail its regulatory activity proceeds via an ArcAAsp54-P→ArcBHis717-P→ArcBAsp576-P→Pi reverse pathway. We propose to further characterize the relationships of structure and function in the phosphorelays for signal transmition and signal decay, to probe the biological significance of the H. influenzae ArcB protein, which lacks almost the entire linker region, and finally to probe for antibacterial agents that inhibit signal transduction systems. Accomplishment of the goals should not only clarify the mechanisms of Arc signal transduction, but could also improve our understanding of the integration of genetic circuits for bacterial adaptation to environmental changes, including those associated with host invasion during pathogenesis. Gaining more precise information on two-component systems, abundant in bacteria but not found in mammals, could also facilitate rational screening for novel drugs to treat infections._x000D_ _x000D_ _x000D_

046.#.#.j: 2019-11-14 12:26:40.706

264.#.1.b: Dirección General de Asuntos del Personal Académico

handle: 52d9899c8575a8b8

harvesting_date: 2019-11-14 12:26:40.706

856.#.0.q: text/html

last_modified: 2019-11-22 00:00:00

license_url: https://creativecommons.org/licenses/by/4.0/legalcode.es

license_type: by

No entro en nada

No entro en nada 2

Registro de colección universitaria

Control of microbial gene expression by extra-cellular Stimulli

Instituto de Fisiología Celular, UNAM, Portal de Datos Abiertos UNAM, Colecciones Universitarias

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Instituto de Fisiología Celular, UNAM
Entidad o dependencia
Dirección General de Asuntos del Personal Académico
Acervo
Colecciones Universitarias Digitales
Repositorio
Contacto
Dirección General de Repositorios Universitarios. contacto@dgru.unam.mx

Cita

Dirección de Desarrollo Académico, Dirección General de Asuntos del Personal Académico (DGAPA). "Control of microbial gene expression by extra-cellular Stimulli", Proyectos Universitarios PAPIIT (PAPIIT). En "Portal de datos abiertos UNAM" (en línea), México, Universidad Nacional Autónoma de México.

Descripción del recurso

Título
Control of microbial gene expression by extra-cellular Stimulli
Colección
Proyectos Universitarios PAPIIT (PAPIIT)
Fecha
2012
Descripción
ABSTRACT_x000D_ Facultative anaerobes, such as Escherichia coli, possess a genetic regulatory network to capitalize on the best mode of energy extraction under different environments. The most efficient mode is aerobic respiration. Expression of many genes in this process is controlled by the ArcA/B two-component regulatory system. This system comprises the ArcB protein, a complex membrane-associated sensor kinase having kinase, phospotransfer and kinase activity, and the ArcA protein, a typical response regulator controlling more than 300 operons. Under reducing conditions, ArcB autophosphorylates by using ATP through an intramolecular reaction, a process enhanced by certain anaerobic metabolites, such as D-lactate and acetate. The phosphoryl group is then transferred to ArcA via an ArcBHis292-P→ArcBAsp576-P→ArcBHis717-P→ArcAAsp54-P phosphorelay, and activates it as a transcriptional regulator. When oxygen becomes available, the oxidized forms of the quinone electron carriers act as ArcB-specific signals that silence the kinase activity of ArcB. The molecular mechanism for kinase silencing involves the oxidation of two cytosol-located redox-active cysteine residues (Cys-180 and Cys-241) that participate in intermolecular disulfide bond formation. Furthermore, dephosphosphorylation of ArcA-P, a reaction needed to curtail its regulatory activity proceeds via an ArcAAsp54-P→ArcBHis717-P→ArcBAsp576-P→Pi reverse pathway. We propose to further characterize the relationships of structure and function in the phosphorelays for signal transmition and signal decay, to probe the biological significance of the H. influenzae ArcB protein, which lacks almost the entire linker region, and finally to probe for antibacterial agents that inhibit signal transduction systems. Accomplishment of the goals should not only clarify the mechanisms of Arc signal transduction, but could also improve our understanding of the integration of genetic circuits for bacterial adaptation to environmental changes, including those associated with host invasion during pathogenesis. Gaining more precise information on two-component systems, abundant in bacteria but not found in mammals, could also facilitate rational screening for novel drugs to treat infections._x000D_ _x000D_ _x000D_
Tema
Biología molecular; Bioquímica, biología molecular, genética y genómica
Identificador global
http://datosabiertos.unam.mx/DGAPA:PAPIIT:IN206412

Enlaces