dor_id: 4135175

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la revista "Educación Química", se juzgan por medio de un proceso de revisión por pares

510.0.#.a: Bibliografía latinoamericana (Biblat); Coordinación de la formación del personal de nivel superior (CAPES); Consejo Nacional de Ciencia y Tecnología (CONACyT); Dialnet; Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Matriz De Información de Análisis de Revistas (MIAR); PERIODICA; Scientific Electronic Library Online (SciELO); A Division of the American Chemical Society (CAS); Scimago Journal & Country Rank; Scopus; European Reference index for the Humanities and Social Sciences (ERIHPLUS)

561.#.#.u: https://quimica.unam.mx/

561.#.#.a: no

650.#.4.x: Biología y Química

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: https://www.revistas.unam.mx/index.php/req

351.#.#.b: Educación Química

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: https://revistas.unam.mx/catalogo/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: https://www.revistas.unam.mx/index.php/req/article/view/79841/72348

100.1.#.a: Winarni, Sri; Effendy, Effendy; Budiasih, Endang; Wonorahardjo, Surjani

524.#.#.a: Winarni, Sri, et al. (2022). Constructing ‘Concept Approval Strategy,’ A Chemistry Learning Idea to Prevent Misconceptions. Educación Química; Vol. 33 Núm. 2, 2022; 159-180. Recuperado de https://repositorio.unam.mx/contenidos/4135175

245.1.0.a: Constructing ‘Concept Approval Strategy,’ A Chemistry Learning Idea to Prevent Misconceptions

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Facultad de Química, UNAM

264.#.0.c: 2022

264.#.1.c: 2022-04-18

653.#.#.a: Misconception prevention; learning strategies; chemical concepts

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico educquim@unam.mx

884.#.#.k: https://www.revistas.unam.mx/index.php/req/article/view/79841

001.#.#.#: 047.oai:ojs.pkp.sfu.ca:article/79841

041.#.7.h: spa

520.3.#.a: The research of misconceptions focuses on identification, prevention, and elimination. Misconceptions are more commonly identified and eliminated than prevented. Elimination of misconceptions tends to be ineffective because misconceptions tend to be resistant. Therefore, preventing misconceptions is a better option than eliminating misconceptions. This article reviewed some literature to design the preventing misconceptions learning. The construction is based on an analysis of effective chemical learning strategies implemented to overcome misconceptions. Learning expected can prevent chemical misconceptions includes four components: (1) improving formal thinking ability; (2) emphasizing concepts constructed by students fundamentally; (3) involving chemical representation; and (4) developing students" positive attitudes towards chemistry. The closest learning approach to preventing misconceptions is guided-inquiry oriented learning. However, there are no stages in the inquiry learning phase detecting the misconceptions before they are applied. The students who have misconceptions can revise them during the concept validation stage. Students can apply valid concepts constructed during the application and problem-solving stages. So, the learning stages designed for preventing misconceptions are (1) Exploration; (2) Concept construction; (3) Concept Validation; (4) Concept Application; and (5) Problem-solving.

773.1.#.t: Educación Química; Vol. 33 Núm. 2 (2022); 159-180

773.1.#.o: https://www.revistas.unam.mx/index.php/req

022.#.#.a: ISSN electrónico: 1870-8404; ISSN impreso: 0187-893X

310.#.#.a: Trimestral

300.#.#.a: Páginas: 159-180

264.#.1.b: Facultad de Química, UNAM

doi: https://doi.org/10.22201/fq.18708404e.2022.2.79841

handle: 00fcfc6b79260f66

harvesting_date: 2023-06-20 16:00:00.0

856.#.0.q: application/pdf

file_creation_date: 2022-04-18 14:24:49.0

file_modification_date: 2022-04-18 14:24:51.0

file_name: c0fe6174c777500945bdd6220eed14db4f1b4ea5359cf0078e886acc3b43fc11.pdf

file_pages_number: 22

file_format_version: application/pdf; version=1.4

file_size: 619969

last_modified: 2023-06-20 16:00:00

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

No entro en nada

No entro en nada 2

Artículo

Constructing ‘Concept Approval Strategy,’ A Chemistry Learning Idea to Prevent Misconceptions

Winarni, Sri; Effendy, Effendy; Budiasih, Endang; Wonorahardjo, Surjani

Facultad de Química, UNAM, publicado en Educación Química, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Facultad de Química, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

Winarni, Sri, et al. (2022). Constructing ‘Concept Approval Strategy,’ A Chemistry Learning Idea to Prevent Misconceptions. Educación Química; Vol. 33 Núm. 2, 2022; 159-180. Recuperado de https://repositorio.unam.mx/contenidos/4135175

Descripción del recurso

Autor(es)
Winarni, Sri; Effendy, Effendy; Budiasih, Endang; Wonorahardjo, Surjani
Tipo
Artículo de Investigación
Área del conocimiento
Biología y Química
Título
Constructing ‘Concept Approval Strategy,’ A Chemistry Learning Idea to Prevent Misconceptions
Fecha
2022-04-18
Resumen
The research of misconceptions focuses on identification, prevention, and elimination. Misconceptions are more commonly identified and eliminated than prevented. Elimination of misconceptions tends to be ineffective because misconceptions tend to be resistant. Therefore, preventing misconceptions is a better option than eliminating misconceptions. This article reviewed some literature to design the preventing misconceptions learning. The construction is based on an analysis of effective chemical learning strategies implemented to overcome misconceptions. Learning expected can prevent chemical misconceptions includes four components: (1) improving formal thinking ability; (2) emphasizing concepts constructed by students fundamentally; (3) involving chemical representation; and (4) developing students" positive attitudes towards chemistry. The closest learning approach to preventing misconceptions is guided-inquiry oriented learning. However, there are no stages in the inquiry learning phase detecting the misconceptions before they are applied. The students who have misconceptions can revise them during the concept validation stage. Students can apply valid concepts constructed during the application and problem-solving stages. So, the learning stages designed for preventing misconceptions are (1) Exploration; (2) Concept construction; (3) Concept Validation; (4) Concept Application; and (5) Problem-solving.
Tema
Misconception prevention; learning strategies; chemical concepts
Idioma
spa
ISSN
ISSN electrónico: 1870-8404; ISSN impreso: 0187-893X

Enlaces