dor_id: 45302

506.#.#.a: Público

590.#.#.d: Los artículos enviados a JART se juzgan por medio de un proceso de revisión por pares

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT), Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex), SCOPUS, Directory of Open Access Journals (DOAJ), Periódica, Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Redalyc), Google Académico

561.#.#.u: https://www.icat.unam.mx/

650.#.4.x: Ingenierías

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: http://jart.icat.unam.mx/index.php/jart

351.#.#.b: Journal of Applied Research and Technology

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: http://www.revistas.unam.mx/front/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial, UNAM

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: http://jart.icat.unam.mx/index.php/jart/article/view/610/606

100.1.#.a: Vázquez, N.; Nakano, M.; Pérez Meana, H.

524.#.#.a: Vázquez, N., et al. (2003). Automatic system for localization and recognition of vehicle plate numbers. Journal of Applied Research and Technology; Vol 1 No 1, 2003. Recuperado de https://repositorio.unam.mx/contenidos/45302

245.1.0.a: Automatic system for localization and recognition of vehicle plate numbers

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Instituto de Ciencias Aplicadas y Tecnología, UNAM

264.#.0.c: 2003

264.#.1.c: 2003-04-01

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY 4.0 Internacional, https://creativecommons.org/licenses/by/4.0/legalcode.es, fecha de asignación de la licencia 2003-04-01, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico revistas@unam.mx

884.#.#.k: http://jart.icat.unam.mx/index.php/jart/article/view/610

001.#.#.#: oai:ojs2.localhost:article/610

041.#.7.h: eng

520.3.#.a: This paper proposes a vehicle numbers plate identification system, which extracts the characters features of a plate from a captured image by a digital camera. Then identify the symbols of the number plate using a multilayer neural network. The proposed recognition system consists of two processes: The training process and the recognition process. During the training process, a database is created using 310 vehicular plate images. Then using this database a multilayer neural network is trained to identify the symbols in the vehicles plate. While the recognition process consists of four stages: The number plate localization stage, the binarization stage, the segmentation stage and the  ecognition stage which uses the previously trained multilayer neural network. The performance of proposed system is evaluated using more than 1200 symbols from the 310 captured images. The simulation results show that approximately 91.5% of the 310 plate images in the vehicle have been correctly located. The proposed system performance, regarding the identification of numbers and letters in the plate, was evaluated separately. Here the recognition rate is 95.55% and 91.6%, respectively. So the global recognition rate of the vehicle number plate becomes approximately 91.2%. Then from the simulation results it follows that the proposed system works fairly well and then it may be applied in the solution of several practical problems that require automatic number plate identification.|Se propone un sistema de identificación de placas vehiculares que facilite y agilice la identificación de las mismas a través de redes neuronales, una vez que han sido obtenidas las características de la placa por medio de una imagen tomada con una cámara fotográfica digital. El sistema propuesto consiste de dos procesos: El proceso de entrenamiento y el proceso de reconocimiento. El proceso de reconocimiento consiste en la localización de la placa dentro de la imagen capturada, la binarización de la misma, la segmentación de los símbolos por medio de la técnica de etiquetamiento, la codificación de los símbolos segmentados y el reconocimiento de los mismos usando las redes neuronales previamente entrenadas por el proceso de entrenamiento. El proceso de entrenamiento por su parte consiste de la creación de la base de datos y el entrenamiento de las redes neuronales multicapas. El funcionamiento del sistema global se evaluó usando el porcentaje de acierto de reconocimiento de los símbolos (números y letras) de las placas correspondientes a 310 imágenes capturadas. Los resultados obtenidos muestran que aproximadamente en un 91.5% de las imágenes se han localizado correctamente la posición de la placa. Por su parte el porcentaje de acierto en el reconocimiento de los dígitos y letras en la placa, se estimaron separadamente, obteniéndose porcentaje de reconocimiento de aproximadamente 95.5% y 91.6% respectivamente, mientras que el reconocimiento global de las placas consistentes de 3 números y 3 letras es de 91.2%. De los resultados obtenidos podemos concluir que el sistema propuesto funciona acertadamente y podría ser empleado en diversos sistemas que requieran detección automática de placas.

773.1.#.t: Journal of Applied Research and Technology; Vol 1 No 1

773.1.#.o: http://jart.icat.unam.mx/index.php/jart

046.#.#.j: 2021-04-13 00:00:00.000000

022.#.#.a: ISSN electrónico: 2448-6736; ISSN: 1665-6423

310.#.#.a: Bimestral

264.#.1.b: Instituto de Ciencias Aplicadas y Tecnología, UNAM

758.#.#.1: http://jart.icat.unam.mx/index.php/jart

doi: https://doi.org/10.22201/icat.16656423.2003.1.01.610

handle: 00b0801df5eedbdc

harvesting_date: 2021-03-08 00:00:00.0

856.#.0.q: application/pdf

last_modified: 2021-04-15 12:10:00.000

license_url: https://creativecommons.org/licenses/by/4.0/legalcode.es

license_type: by

_deleted_conflicts: 2-0ad8a61eb7f77032d1ae81cf9f4a0ea5

No entro en nada

No entro en nada 2

Artículo

Automatic system for localization and recognition of vehicle plate numbers

Vázquez, N.; Nakano, M.; Pérez Meana, H.

Instituto de Ciencias Aplicadas y Tecnología, UNAM, publicado en Journal of Applied Research and Technology, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Cita

Vázquez, N., et al. (2003). Automatic system for localization and recognition of vehicle plate numbers. Journal of Applied Research and Technology; Vol 1 No 1, 2003. Recuperado de https://repositorio.unam.mx/contenidos/45302

Descripción del recurso

Autor(es)
Vázquez, N.; Nakano, M.; Pérez Meana, H.
Tipo
Artículo de Investigación
Área del conocimiento
Ingenierías
Título
Automatic system for localization and recognition of vehicle plate numbers
Fecha
2003-04-01
Resumen
This paper proposes a vehicle numbers plate identification system, which extracts the characters features of a plate from a captured image by a digital camera. Then identify the symbols of the number plate using a multilayer neural network. The proposed recognition system consists of two processes: The training process and the recognition process. During the training process, a database is created using 310 vehicular plate images. Then using this database a multilayer neural network is trained to identify the symbols in the vehicles plate. While the recognition process consists of four stages: The number plate localization stage, the binarization stage, the segmentation stage and the  ecognition stage which uses the previously trained multilayer neural network. The performance of proposed system is evaluated using more than 1200 symbols from the 310 captured images. The simulation results show that approximately 91.5% of the 310 plate images in the vehicle have been correctly located. The proposed system performance, regarding the identification of numbers and letters in the plate, was evaluated separately. Here the recognition rate is 95.55% and 91.6%, respectively. So the global recognition rate of the vehicle number plate becomes approximately 91.2%. Then from the simulation results it follows that the proposed system works fairly well and then it may be applied in the solution of several practical problems that require automatic number plate identification.|Se propone un sistema de identificación de placas vehiculares que facilite y agilice la identificación de las mismas a través de redes neuronales, una vez que han sido obtenidas las características de la placa por medio de una imagen tomada con una cámara fotográfica digital. El sistema propuesto consiste de dos procesos: El proceso de entrenamiento y el proceso de reconocimiento. El proceso de reconocimiento consiste en la localización de la placa dentro de la imagen capturada, la binarización de la misma, la segmentación de los símbolos por medio de la técnica de etiquetamiento, la codificación de los símbolos segmentados y el reconocimiento de los mismos usando las redes neuronales previamente entrenadas por el proceso de entrenamiento. El proceso de entrenamiento por su parte consiste de la creación de la base de datos y el entrenamiento de las redes neuronales multicapas. El funcionamiento del sistema global se evaluó usando el porcentaje de acierto de reconocimiento de los símbolos (números y letras) de las placas correspondientes a 310 imágenes capturadas. Los resultados obtenidos muestran que aproximadamente en un 91.5% de las imágenes se han localizado correctamente la posición de la placa. Por su parte el porcentaje de acierto en el reconocimiento de los dígitos y letras en la placa, se estimaron separadamente, obteniéndose porcentaje de reconocimiento de aproximadamente 95.5% y 91.6% respectivamente, mientras que el reconocimiento global de las placas consistentes de 3 números y 3 letras es de 91.2%. De los resultados obtenidos podemos concluir que el sistema propuesto funciona acertadamente y podría ser empleado en diversos sistemas que requieran detección automática de placas.
Idioma
eng
ISSN
ISSN electrónico: 2448-6736; ISSN: 1665-6423

Enlaces