Analysis & Prediction of New York City Taxi and Uber Demands
Correa, Diego; Moyano, Christian
Instituto de Ciencias Aplicadas y Tecnología, UNAM, publicado en Journal of Applied Research and Technology, y cosechado de Revistas UNAM
dor_id: 4150049
506.#.#.a: Público
590.#.#.d: Los artículos enviados a la revista "Journal of Applied Research and Technology", se juzgan por medio de un proceso de revisión por pares
510.0.#.a: Scopus, Directory of Open Access Journals (DOAJ); Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Indice de Revistas Latinoamericanas en Ciencias (Periódica); La Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Redalyc); Consejo Nacional de Ciencia y Tecnología (CONACyT); Google Scholar Citation
561.#.#.u: https://www.icat.unam.mx/
650.#.4.x: Ingenierías
336.#.#.b: article
336.#.#.3: Artículo de Investigación
336.#.#.a: Artículo
351.#.#.6: https://jart.icat.unam.mx/index.php/jart
351.#.#.b: Journal of Applied Research and Technology
351.#.#.a: Artículos
harvesting_group: RevistasUNAM
270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx
590.#.#.c: Open Journal Systems (OJS)
270.#.#.d: MX
270.1.#.d: México
590.#.#.b: Concentrador
883.#.#.u: https://revistas.unam.mx/catalogo/
883.#.#.a: Revistas UNAM
590.#.#.a: Coordinación de Difusión Cultural
883.#.#.1: https://www.publicaciones.unam.mx/
883.#.#.q: Dirección General de Publicaciones y Fomento Editorial
850.#.#.a: Universidad Nacional Autónoma de México
856.4.0.u: https://jart.icat.unam.mx/index.php/jart/article/view/2074/1046
100.1.#.a: Correa, Diego; Moyano, Christian
524.#.#.a: Correa, Diego, et al. (2023). Analysis & Prediction of New York City Taxi and Uber Demands. Journal of Applied Research and Technology; Vol. 21 Núm. 5, 2023; 886-898. Recuperado de https://repositorio.unam.mx/contenidos/4150049
245.1.0.a: Analysis & Prediction of New York City Taxi and Uber Demands
502.#.#.c: Universidad Nacional Autónoma de México
561.1.#.a: Instituto de Ciencias Aplicadas y Tecnología, UNAM
264.#.0.c: 2023
264.#.1.c: 2023-10-30
653.#.#.a: Large Scale Data Analysis; GPS-enabled Taxi Data; Machine Learning Algorithms; Taxi & Uber demand Prediction; Visual Analytics; New York City
506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico gabriel.ascanio@icat.unam.mx
884.#.#.k: https://jart.icat.unam.mx/index.php/jart/article/view/2074
001.#.#.#: 074.oai:ojs2.localhost:article/2074
041.#.7.h: eng
520.3.#.a: Taxi and Uber are an imperative transportation mode in New York City (NYC). This paper investigates the spatiotemporal distribution of pickups of medallion taxi (Yellow), Street Hail Livery Service taxi (Green), and Uber services in NYC, within the five boroughs Brooklyn, the Bronx, Manhattan, Queens, and Staten Island. Regression Models and Machine Learning algorithms such as XGboost and Random Forest are used to predict the ridership of taxis and Uber dataset combined in NYC, given a time window of one-hour and locations within zip-code areas. The dataset consisting of over 90 million trips within the period April-September 2014, being Yellow with 86% the most used in the city, followed by Green with 9% and Uber with 5%. In outer boroughs, the number of pickups is 12.9 million (14%), while 77.9 million (86%) were made in Manhattan only. Yellow is the predominant option in Manhattan and Queens, while Green is preferred in Brooklyn and Bronx. In Staten Island, the market is shared between the three services. However, Uber presents a highly rising trend of 81% in Manhattan and 145% in outer boroughs during the analysis period. The regression model XGboost performed best because of its exceptional capacity to catch complex feature dependencies. The XGboost model accomplished an estimation of 38.51 for RMSE and 0.97 for R^2. This modelcould present valuable insights to taxi companies, decision-makers, and city planners in responding to questions, e.g., how to situate taxis where they are generally required, understand how ridership shifts over time, and the total number of taxis needed to dispatch in order to meet de the demand.
773.1.#.t: Journal of Applied Research and Technology; Vol. 21 Núm. 5 (2023); 886-898
773.1.#.o: https://jart.icat.unam.mx/index.php/jart
022.#.#.a: ISSN electrónico: 2448-6736; ISSN: 1665-6423
310.#.#.a: Bimestral
300.#.#.a: Páginas: 886-898
264.#.1.b: Instituto de Ciencias Aplicadas y Tecnología, UNAM
doi: https://doi.org/10.22201/icat.24486736e.2023.21.5.2074
harvesting_date: 2023-11-08 13:10:00.0
856.#.0.q: application/pdf
file_creation_date: 2023-10-30 01:15:05.0
file_modification_date: 2023-10-30 01:15:13.0
file_creator: Yolanda G.G.
file_name: f14cddc18cf4ecf185941a60ff082c97e04dbe7a0d3b26f0a58e13e9b59dd9c0.pdf
file_pages_number: 13
file_format_version: application/pdf; version=1.6
file_size: 1927068
last_modified: 2024-03-19 14:00:00
license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es
license_type: by-nc-nd
Correa, Diego; Moyano, Christian
Instituto de Ciencias Aplicadas y Tecnología, UNAM, publicado en Journal of Applied Research and Technology, y cosechado de Revistas UNAM
Correa, Diego, et al. (2023). Analysis & Prediction of New York City Taxi and Uber Demands. Journal of Applied Research and Technology; Vol. 21 Núm. 5, 2023; 886-898. Recuperado de https://repositorio.unam.mx/contenidos/4150049