dor_id: 4161049
506.#.#.a: Público
590.#.#.d: Los artículos enviados a la "Revista Internacional de Contaminación Ambiental" se juzgan por medio de un proceso de revisión por pares
510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT); Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Scientific Electronic Library Online (SciELO); SCOPUS, Web Of Science (WoS); Aquatic Sciences and Fisheries Abstracts, Cab Abstracts, Cab Health, Chemical Abstracts, Elsevier Biobase, Elsevier Geo Abstracts, Periódica, Pollution Abstracts, SCOPUS, Water Resources Abstracts
561.#.#.u: https://www.atmosfera.unam.mx/
650.#.4.x: Biología y Química
336.#.#.b: article
336.#.#.3: Artículo de Investigación
336.#.#.a: Artículo
351.#.#.6: https://www.revistascca.unam.mx/rica/index.php/rica/index
351.#.#.b: Revista Internacional de Contaminación Ambiental
351.#.#.a: Artículos
harvesting_group: RevistasUNAM.105
270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx
590.#.#.c: Open Journal Systems (OJS)
270.#.#.d: MX
270.1.#.d: México
590.#.#.b: Concentrador
883.#.#.u: https://revistas.unam.mx/catalogo/
883.#.#.a: Revistas UNAM
590.#.#.a: Coordinación de Difusión Cultural
883.#.#.1: https://www.publicaciones.unam.mx/
883.#.#.q: Dirección General de Publicaciones y Fomento Editorial
850.#.#.a: Universidad Nacional Autónoma de México
856.4.0.u: https://www.revistascca.unam.mx/rica/index.php/rica/article/view/54752/47473
100.1.#.a: González-Nava, Catalina; Canul-Chan, Michel; Campos, Juan; Caballero-Pérez, Juan; Houbron, Eric; Godínez, Luis A.; Rodríguez-Valadez, Francisco J.
524.#.#.a: González-Nava, Catalina, et al. (2024). Analysis of the potential of the electroactive biofilm growth in a microbial fuel cell type H (Fabricio Espejel and Reyna García, Editors). Revista Internacional de Contaminación Ambiental; Vol. 40, 2024; 591-60. Recuperado de https://repositorio.unam.mx/contenidos/4161049
245.1.0.a: Analysis of the potential of the electroactive biofilm growth in a microbial fuel cell type H (Fabricio Espejel and Reyna García, Editors)
502.#.#.c: Universidad Nacional Autónoma de México
561.1.#.a: Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM
264.#.0.c: 2024
264.#.1.c: 2024-11-21
653.#.#.a: caracterización; microorganismos; metagenómica; taxonomía; characterization; microorganisms; metagenomic; taxonomy
506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC 4.0 Internacional, https://creativecommons.org/licenses/by-nc/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico claudio.amescua@atmosfera.unam.mx
884.#.#.k: https://www.revistascca.unam.mx/rica/index.php/rica/article/view/54752
001.#.#.#: 105.oai:ojs.pkp.sfu.ca:article/54752
041.#.7.h: spa
520.3.#.a: Microbial fuel cells (MFC) constitute an attractive alternative as an environmental remediation technology since they can generate electrical current using organic waste as a substrate. Since the performance of MFCs depends on the characteristics of the biofilm on the anode surface, it is important to assess the genetic information of the microorganisms that grow on the electrode. For this purpose, a sewage sludge sample was obtained from a wastewater treatment plant and used to inoculate a type H MFC. Electrochemical characterization, on one hand, indicates that while the biofilm has a typical electrochemical performance reflected by the generated voltage (near 0.4 V) and by the electroactivity observed in cyclic voltammetry experiments, and on the other hand, the metagenomic analysis shows that the most abundant genera are Pseudomonacea, Nitrosomonas, Hyphomonas, and Opitutus. The study also indicates that the biofilm’s electroactive microorganisms can metabolize amino acids, lipids, and carbohydrates and possess genetic tools for ionic transport and energy production. Regarding the electron acceptor/donator capabilities, several oxidases, reductases, and complexes were identified, mainly terminal cytochrome C oxidase and respiratory complex I, which could be associated with the exoelectrogenic capacity of the microorganisms. Finally, the metagenomic information indicates that the biofilm can synthesize rhamnose, sialic acid, and alginate molecules, which could possibly be associated with the formation and consolidation of the microbial biofilm.
773.1.#.t: Revista Internacional de Contaminación Ambiental; Vol. 40 (2024); 591-60
773.1.#.o: https://www.revistascca.unam.mx/rica/index.php/rica/index
022.#.#.a: ISSN impreso: 0188-4999
310.#.#.a: Trimestral
300.#.#.a: Páginas: 591-60
599.#.#.a: 105
264.#.1.b: Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM
doi: https://doi.org/10.20937/RICA.54752
harvesting_date: 2025-01-07 00:00:00.0
856.#.0.q: text/html; charset=UTF-8
file_name: f31729f80d005f7f11eb27b89a303d05e4934b9ac3d2f565d1a81d002ff6455d.html
file_size: 956
245.1.0.b: Analysis of the potential of the electroactive biofilm growth in a microbial fuel cell type H (Fabricio Espejel and Reyna García, Editors)
last_modified: 2025-01-07 00:00:00
license_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode.es
license_type: by-nc
No entro en nada
No entro en nada 2