dor_id: 26141

506.#.#.a: Público

590.#.#.d: Cada artículo es evaluado mediante una revisión ciega única. Los revisores son externos nacionales e internacionales.

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT), Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex), Scientific Electronic Library Online (SciELO), Red de Revistas Científicas de América Latina y El Caribe, España y Portugal (RedALyC), Organización de Estados Iberoamericanos (CREDI), Actualidad Iberoamericana de Chile, Red Iberomericana de Innovación y Conocimiento Científico (REDIB), Science Direct, Directory of Open Acces Journals, Indice de Revistas Latinoamericanas en Ciencias (Periódica), Bibliografía Latinoamericana (Biblat), Índice Internacional de Revistas Actualidad Iberoamericana (CIT)

561.#.#.u: https://www.ingenieria.unam.mx/

650.#.4.x: Ingenierías

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: http://www.revistas.unam.mx/index.php/ingenieria/index

351.#.#.b: Ingeniería, Investigación y Tecnología

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: http://www.revistas.unam.mx/front/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural, UNAM

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial, UNAM

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: http://www.revistas.unam.mx/index.php/ingenieria/article/view/42011/38132

100.1.#.a: Marroquín de, Jesús Ángel; Olivares Ramírez, Juan Manuel; Jiménez Sandoval, Omar; Zamora Antuñano, Marco Antonio; Encinas Oropesa, Armando

524.#.#.a: Marroquín de, Jesús Ángel, et al. (2013). Analysis of Flow and Heat Transfer in a Flat Solar Collector with Rectangular and Cylindrical Geometry Using CFD. Ingeniería Investigación y Tecnología; Vol 14, No 4, 2013. Recuperado de https://repositorio.unam.mx/contenidos/26141

245.1.0.a: Analysis of Flow and Heat Transfer in a Flat Solar Collector with Rectangular and Cylindrical Geometry Using CFD

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Facultad de Ingeniería, UNAM

264.#.0.c: 2013

264.#.1.c: 2015-01-22

653.#.#.a: Flow structure; flat solar collectors; simulation cfd; heat transfer; solar radiation; flow structure; flat solar collectors; simulation cfd; heat transfer; solar radiation

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, fecha de asignación de la licencia 2015-01-22, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico marciaglez@dirfing.unam.mx

884.#.#.k: http://www.revistas.unam.mx/index.php/ingenieria/article/view/42011

001.#.#.#: oai:ojs.phoenicis.tic.unam.mx:article/42011

041.#.7.h: spa

520.3.#.a: The present investigation describes the construction and experimentation of two solar energy absorbersusing water as working fluid and its simulation in computational fluid dynamics (cfd). for absorber a with rectangular cross section and absorber b with circular cross section, water temperature was calculated using solar radiation and ambient temperature measurements showing increases of up to 62.5°c for both absorbers. The maximum thermosiphonic flow measurement in absorber a was 70l/h and 79l/h in absorber b. on this basis, finite element method and cfd were used to analyze the difference between both flows, with 45, 50, 55, 60, 65 and 70 l/h as simulation values. with the simulation results the reynolds numbers were determined, finding that the maximum flow (70 l/h) gives the largest reynolds number variation: 25 ≤ re ≤ 115 for absorber a and 199 ≤ re ≤ 235 for absorber b. with a smaller variation in absorber b, the flow at all ducts turns out to be more uniform, which results in more ducts transferring heat to the working fluid. the present investigation describes the construction and experimentation of two solar energy absorbersusing water as working fluid and its simulation in computational fluid dynamics (cfd). for absorber a with rectangular cross section and absorber b with circular cross section, water temperature was calculated using solar radiation and ambient temperature measurements showing increases of up to 62.5°c for both absorbers. The maximum thermosiphonic flow measurement in absorber a was 70l/h and 79l/h in absorber b. on this basis, finite element method and cfd were used to analyze the difference between both flows, with 45, 50, 55, 60, 65 and 70 l/h as simulation values. with the simulation results the reynolds numbers were determined, finding that the maximum flow (70 l/h) gives the largest reynolds number variation: 25 ≤ re ≤ 115 for absorber a and 199 ≤ re ≤ 235 for absorber b. with a smaller variation in absorber b, the flow at all ducts turns out to be more uniform, which results in more ducts transferring heat to the working fluid.

773.1.#.t: Ingeniería Investigación y Tecnología; Vol 14, No 4 (2013)

773.1.#.o: http://www.revistas.unam.mx/index.php/ingenieria/index

046.#.#.j: 2021-08-03 00:00:00.000000

022.#.#.a: ISSN impreso: 1405-7743

310.#.#.a: Trimestral

264.#.1.b: Facultad de Ingeniería, UNAM

758.#.#.1: http://www.revistas.unam.mx/index.php/ingenieria/index

handle: 033153236bf90970

harvesting_date: 2019-02-06 00:00:00.0

856.#.0.q: application/pdf

245.1.0.b: Analysis of Flow and Heat Transfer in a Flat Solar Collector with Rectangular and Cylindrical Geometry Using CFD

last_modified: 2021-08-12 16:00:00

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

_deleted_conflicts: 2-0d1c414d3ac0c65ec6796f5ee8ccba9c

No entro en nada

No entro en nada 2

Artículo

Analysis of Flow and Heat Transfer in a Flat Solar Collector with Rectangular and Cylindrical Geometry Using CFD

Marroquín de, Jesús Ángel; Olivares Ramírez, Juan Manuel; Jiménez Sandoval, Omar; Zamora Antuñano, Marco Antonio; Encinas Oropesa, Armando

Facultad de Ingeniería, UNAM, publicado en Ingeniería, Investigación y Tecnología, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Cita

Marroquín de, Jesús Ángel, et al. (2013). Analysis of Flow and Heat Transfer in a Flat Solar Collector with Rectangular and Cylindrical Geometry Using CFD. Ingeniería Investigación y Tecnología; Vol 14, No 4, 2013. Recuperado de https://repositorio.unam.mx/contenidos/26141

Descripción del recurso

Autor(es)
Marroquín de, Jesús Ángel; Olivares Ramírez, Juan Manuel; Jiménez Sandoval, Omar; Zamora Antuñano, Marco Antonio; Encinas Oropesa, Armando
Tipo
Artículo de Investigación
Área del conocimiento
Ingenierías
Título
Analysis of Flow and Heat Transfer in a Flat Solar Collector with Rectangular and Cylindrical Geometry Using CFD
Fecha
2015-01-22
Resumen
The present investigation describes the construction and experimentation of two solar energy absorbersusing water as working fluid and its simulation in computational fluid dynamics (cfd). for absorber a with rectangular cross section and absorber b with circular cross section, water temperature was calculated using solar radiation and ambient temperature measurements showing increases of up to 62.5°c for both absorbers. The maximum thermosiphonic flow measurement in absorber a was 70l/h and 79l/h in absorber b. on this basis, finite element method and cfd were used to analyze the difference between both flows, with 45, 50, 55, 60, 65 and 70 l/h as simulation values. with the simulation results the reynolds numbers were determined, finding that the maximum flow (70 l/h) gives the largest reynolds number variation: 25 ≤ re ≤ 115 for absorber a and 199 ≤ re ≤ 235 for absorber b. with a smaller variation in absorber b, the flow at all ducts turns out to be more uniform, which results in more ducts transferring heat to the working fluid. the present investigation describes the construction and experimentation of two solar energy absorbersusing water as working fluid and its simulation in computational fluid dynamics (cfd). for absorber a with rectangular cross section and absorber b with circular cross section, water temperature was calculated using solar radiation and ambient temperature measurements showing increases of up to 62.5°c for both absorbers. The maximum thermosiphonic flow measurement in absorber a was 70l/h and 79l/h in absorber b. on this basis, finite element method and cfd were used to analyze the difference between both flows, with 45, 50, 55, 60, 65 and 70 l/h as simulation values. with the simulation results the reynolds numbers were determined, finding that the maximum flow (70 l/h) gives the largest reynolds number variation: 25 ≤ re ≤ 115 for absorber a and 199 ≤ re ≤ 235 for absorber b. with a smaller variation in absorber b, the flow at all ducts turns out to be more uniform, which results in more ducts transferring heat to the working fluid.
Tema
Flow structure; flat solar collectors; simulation cfd; heat transfer; solar radiation; flow structure; flat solar collectors; simulation cfd; heat transfer; solar radiation
Idioma
spa
ISSN
ISSN impreso: 1405-7743

Enlaces