dor_id: 41638

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la Revista Mexicana de Física se someten a un estricto proceso de revisión llevado a cabo por árbitros anónimos, independientes y especializados en todo el mundo.

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT), Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex), Scientific Electronic Library Online (SciELO), SCOPUS, Web Of Science (WoS)

561.#.#.u: http://www.fciencias.unam.mx/

650.#.4.x: Físico Matemáticas y Ciencias de la Tierra

336.#.#.b: info:eu-repo/semantics/article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: http://revistas.unam.mx/index.php/rmf

351.#.#.b: Revista Mexicana de Física

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: http://www.revistas.unam.mx/front/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: http://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial, UNAM

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: http://revistas.unam.mx/index.php/rmf/article/view/21480/20252

100.1.#.a: García R, P. J; Gutierrez D, E. A.; Martinez C, J.

524.#.#.a: García R, P. J, et al. (2010). An on-chip magnetic probe based on MOSFET technology. Revista Mexicana de Física; Vol 56, No 005. Recuperado de https://repositorio.unam.mx/contenidos/41638

245.1.0.a: An on-chip magnetic probe based on MOSFET technology

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Facultad de Ciencias, UNAM

264.#.0.c: 2010

264.#.1.c: 2010-12-06

653.#.#.a: Magnetic field measurement; integrated sensor; magnetic field-effect transistor (MAGFET); hall effect; radiation on-chip

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, fecha de asignación de la licencia 2010-12-06, para un uso diferente consultar al responsable jurídico del repositorio por medio de rmf@ciencias.unam.mx

884.#.#.k: http://revistas.unam.mx/index.php/rmf/article/view/21480

041.#.7.h: eng

520.3.#.a: An original application for a magnetic field-sensitive Split-Drain MOSFET (MAGFET) used to monitor both the integrity of the electrical signal on-chip, as well as the magnetic flux density radiation on-chip is presented in this work. We introduce experimental and simulation results of a test chip that prove static and low-frequency on-chip generated magnetic fields that can be detected on-chip leading to a fluctuation in the drain current (∆IDS) of a MAGFET device. The design of this first version of the test chip is intended for DC characterization as the pads, package and wiring do not allow going above a frequency of 300 MHz. In this particular case of a 0.5 μm CMOS technology and the used dimensions, the cutoff frequency of the test MAGFET is in the range of 500 MHz to 1 GHz depending on the bias conditions. For the static and low-frequency case used in this experimental work the capacitive coupling between the interconnect line and the gate electrode is negligible. The current in the interconnected line, that varies from 500 μA to 35 mA, generates a magnetic flux density at a rate of 100 μT/mA. When these magnetic lines cross through the channel of the MOS transistor, an electromagnetic coupling rate (∆IDS/B) as far as 1.5 μA/mT is induced. We observed that from the 0.7, 0.5, and 0.35 μm characterized MOS technologies data, the (∆IDS/B) rate increases with the miniaturization process of fabrication technology. This electromagnetic rate reduces as the temperature is increased from 20 to 120◦C. From numerical simulations we conclude that this phenomenon is attributed to the way carrier mobility and inversion channel charge interplay with the on-chip tangential and perpendicular components of the (B) field. Having an array of MAGFETs distributed on the surface of the chip would serve to monitor the EM radiation, which in turn may be used for estimation and mitigation of RF interference. These results allow establishing the basis for a future develo±ent for on-chip magnetic probe for nanometer MOS technologies.

773.1.#.t: Revista Mexicana de Física; Vol 56, No 005 (2010)

773.1.#.o: http://revistas.unam.mx/index.php/rmf

046.#.#.j: 2020-11-25 00:00:00.000000

022.#.#.a: 2683-2224 (digital); 0035-001X (impresa)

310.#.#.a: Bimestral

264.#.1.b: Sociedad Mexicana de Física, A.C.

758.#.#.1: http://revistas.unam.mx/index.php/rmf

handle: 5667e154cb153d93

harvesting_date: 2020-09-23 00:00:00.0

856.#.0.q: application/pdf

last_modified: 2020-11-27 00:00:00

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

_deleted_conflicts: 6-4f1852b81f5ba2bbb3a04bf19b783880,2-d1b270e18318d441d1364ced25156128

No entro en nada

No entro en nada 2

Artículo

An on-chip magnetic probe based on MOSFET technology

García R, P. J; Gutierrez D, E. A.; Martinez C, J.

Facultad de Ciencias, UNAM, publicado en Revista Mexicana de Física, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Entidad o dependencia
Facultad de Ciencias, UNAM
Revista
Repositorio
Contacto
Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

Cita

García R, P. J, et al. (2010). An on-chip magnetic probe based on MOSFET technology. Revista Mexicana de Física; Vol 56, No 005. Recuperado de https://repositorio.unam.mx/contenidos/41638

Descripción del recurso

Autor(es)
García R, P. J; Gutierrez D, E. A.; Martinez C, J.
Tipo
Artículo de Investigación
Área del conocimiento
Físico Matemáticas y Ciencias de la Tierra
Título
An on-chip magnetic probe based on MOSFET technology
Fecha
2010-12-06
Resumen
An original application for a magnetic field-sensitive Split-Drain MOSFET (MAGFET) used to monitor both the integrity of the electrical signal on-chip, as well as the magnetic flux density radiation on-chip is presented in this work. We introduce experimental and simulation results of a test chip that prove static and low-frequency on-chip generated magnetic fields that can be detected on-chip leading to a fluctuation in the drain current (∆IDS) of a MAGFET device. The design of this first version of the test chip is intended for DC characterization as the pads, package and wiring do not allow going above a frequency of 300 MHz. In this particular case of a 0.5 μm CMOS technology and the used dimensions, the cutoff frequency of the test MAGFET is in the range of 500 MHz to 1 GHz depending on the bias conditions. For the static and low-frequency case used in this experimental work the capacitive coupling between the interconnect line and the gate electrode is negligible. The current in the interconnected line, that varies from 500 μA to 35 mA, generates a magnetic flux density at a rate of 100 μT/mA. When these magnetic lines cross through the channel of the MOS transistor, an electromagnetic coupling rate (∆IDS/B) as far as 1.5 μA/mT is induced. We observed that from the 0.7, 0.5, and 0.35 μm characterized MOS technologies data, the (∆IDS/B) rate increases with the miniaturization process of fabrication technology. This electromagnetic rate reduces as the temperature is increased from 20 to 120◦C. From numerical simulations we conclude that this phenomenon is attributed to the way carrier mobility and inversion channel charge interplay with the on-chip tangential and perpendicular components of the (B) field. Having an array of MAGFETs distributed on the surface of the chip would serve to monitor the EM radiation, which in turn may be used for estimation and mitigation of RF interference. These results allow establishing the basis for a future develo±ent for on-chip magnetic probe for nanometer MOS technologies.
Tema
Magnetic field measurement; integrated sensor; magnetic field-effect transistor (MAGFET); hall effect; radiation on-chip
Idioma
eng
ISSN
2683-2224 (digital); 0035-001X (impresa)

Enlaces