dor_id: 4150015
506.#.#.a: Público
590.#.#.d: Los artículos enviados a la revista "Journal of Applied Research and Technology", se juzgan por medio de un proceso de revisión por pares
510.0.#.a: Scopus, Directory of Open Access Journals (DOAJ); Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Indice de Revistas Latinoamericanas en Ciencias (Periódica); La Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Redalyc); Consejo Nacional de Ciencia y Tecnología (CONACyT); Google Scholar Citation
561.#.#.u: https://www.icat.unam.mx/
650.#.4.x: Ingenierías
336.#.#.b: article
336.#.#.3: Artículo de Investigación
336.#.#.a: Artículo
351.#.#.6: https://jart.icat.unam.mx/index.php/jart
351.#.#.b: Journal of Applied Research and Technology
351.#.#.a: Artículos
harvesting_group: RevistasUNAM
270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx
590.#.#.c: Open Journal Systems (OJS)
270.#.#.d: MX
270.1.#.d: México
590.#.#.b: Concentrador
883.#.#.u: https://revistas.unam.mx/catalogo/
883.#.#.a: Revistas UNAM
590.#.#.a: Coordinación de Difusión Cultural
883.#.#.1: https://www.publicaciones.unam.mx/
883.#.#.q: Dirección General de Publicaciones y Fomento Editorial
850.#.#.a: Universidad Nacional Autónoma de México
856.4.0.u: https://jart.icat.unam.mx/index.php/jart/article/view/2057/1042
100.1.#.a: Velez Sanchez, Jeisson Emilio; Botero Londoño, Monica Andrea; Sepulveda Sepulveda, Franklin Alexander; Otalora Bastidas, Camilo Andres; Camacho Parra, Cristian David
524.#.#.a: Velez Sanchez, Jeisson Emilio, et al. (2023). Absorber Layer Thickness as a New Feature in Statistical Learning Tools of Perovskite Solar Cells. Journal of Applied Research and Technology; Vol. 21 Núm. 5, 2023; 858-865. Recuperado de https://repositorio.unam.mx/contenidos/4150015
245.1.0.a: Absorber Layer Thickness as a New Feature in Statistical Learning Tools of Perovskite Solar Cells
502.#.#.c: Universidad Nacional Autónoma de México
561.1.#.a: Instituto de Ciencias Aplicadas y Tecnología, UNAM
264.#.0.c: 2023
264.#.1.c: 2023-10-30
653.#.#.a: Perovskite solar cells; machine learning; mutual information; thickness
506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico gabriel.ascanio@icat.unam.mx
884.#.#.k: https://jart.icat.unam.mx/index.php/jart/article/view/2057
001.#.#.#: 074.oai:ojs2.localhost:article/2057
041.#.7.h: eng
520.3.#.a: In the last decade, the development of perovskite-based solar cells has emerged as a technological alternative for the photovoltaic generation with a higher efficiency/cost ratio. Many contributions have been made in recent years, as evidenced by many academic publications with worldwide experimental results in this area. Machine learning as a tool can support the development of this technology by predicting new materials, novel solar cell configurations, and evaluating the most relevant experimental parameters, among others. For this, the automatic learning models used in predicting or classifying the information available in the literature or generated experimentally must be improved. One way to improve these models is by including new descriptors that allow improving the prediction. In this work, we evaluated the use of the absorber layer thickness as a descriptor in a linear regression model using a database of 221 literature records containing information on the bandgap, the ?HOMO (perovskite-HTL), and ?LUMO (perovskite-ETL) of different perovskite cells, together with the thickness of the absorber layer. By building two multiple linear regression models, including or not the thickness of the absorber layer, a reduction in the root mean square error RMSE of 4.4% and 2.8% was found in the prediction of the Jsc and PCE, respectively. By applying a linear regression model, an improvement in the prediction of Jsc can be seen due to the inclusion of thickness as a descriptor, which is in line with the relatively high value of the mutual information measure between thickness and Jsc.
773.1.#.t: Journal of Applied Research and Technology; Vol. 21 Núm. 5 (2023); 858-865
773.1.#.o: https://jart.icat.unam.mx/index.php/jart
022.#.#.a: ISSN electrónico: 2448-6736; ISSN: 1665-6423
310.#.#.a: Bimestral
300.#.#.a: Páginas: 858-865
264.#.1.b: Instituto de Ciencias Aplicadas y Tecnología, UNAM
doi: https://doi.org/10.22201/icat.24486736e.2023.21.5.2057
harvesting_date: 2023-11-08 13:10:00.0
856.#.0.q: application/pdf
file_creation_date: 2023-10-24 22:14:04.0
file_modification_date: 2023-10-24 22:14:09.0
file_creator: Yolanda G.G.
file_name: 19291591e205b1cd891d53ae6151a1966569bdf0fa3e9e309c2f8d2cb99512fa.pdf
file_pages_number: 8
file_format_version: application/pdf; version=1.6
file_size: 701936
last_modified: 2024-03-19 14:00:00
license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es
license_type: by-nc-nd
No entro en nada
No entro en nada 2