dor_id: 4148911

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la revista "Journal of Applied Research and Technology", se juzgan por medio de un proceso de revisión por pares

510.0.#.a: Scopus, Directory of Open Access Journals (DOAJ); Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Indice de Revistas Latinoamericanas en Ciencias (Periódica); La Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Redalyc); Consejo Nacional de Ciencia y Tecnología (CONACyT); Google Scholar Citation

561.#.#.u: https://www.icat.unam.mx/

650.#.4.x: Ingenierías

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: https://jart.icat.unam.mx/index.php/jart

351.#.#.b: Journal of Applied Research and Technology

351.#.#.a: Artículos

harvesting_group: RevistasUNAM

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: https://revistas.unam.mx/catalogo/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: https://jart.icat.unam.mx/index.php/jart/article/view/1659/1039

100.1.#.a: Di Nardo, Mario; Murino, T.; Adegbola, K.

524.#.#.a: Di Nardo, Mario, et al. (2023). A Methodology for Selecting Optimal Knowledge Acquisition Through Analytic Hierarchy Process and Environment Parameters Impact.. Journal of Applied Research and Technology; Vol. 21 Núm. 5, 2023; 825-849. Recuperado de https://repositorio.unam.mx/contenidos/4148911

245.1.0.a: A Methodology for Selecting Optimal Knowledge Acquisition Through Analytic Hierarchy Process and Environment Parameters Impact.

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Instituto de Ciencias Aplicadas y Tecnología, UNAM

264.#.0.c: 2023

264.#.1.c: 2023-10-30

653.#.#.a: Knowledge Management; Industry 40; Analytical hierarchy process (AHP); Knowledge-based systems; Manufacturing Know

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico gabriel.ascanio@icat.unam.mx

884.#.#.k: https://jart.icat.unam.mx/index.php/jart/article/view/1659

001.#.#.#: 074.oai:ojs2.localhost:article/1659

041.#.7.h: eng

520.3.#.a: In a global economy characterised by increasingly dynamic markets and technologies, the primary importance of intangible resources like knowledge is growing dramatically, especially for small and medium-sized enterprises (SME). Therefore, many companies are trying to support changes by configuring their production systems towards mass customisation. This evolving paradigm shift from mass production to mass customisation brings about complex product lifecycles that require continuous re-engineering/configuration of modern manufacturing systems. Rapid manufacturing companies" changes result in adjusting and updating the existing knowledge base to maintain their competitive advantage. Within companies, different tacit and explicit knowledge are available, relating to resources, processes and components. This data is usually not digitised, and therefore the main challenge for small and medium-sized enterprises is how to automate the knowledge acquisition process, choosing the best tools for knowledge preservation. Starting from the analysis of models presented in the literature, we defined a methodology to support selecting the optimal acquisition of knowledge and preservation in any phase of production systems. In an environment where business uncertainty is the norm, developing knowledge acquisition capabilities is increasingly important. The paper"s main contribution is the AHP-PIE methodology, which provides a helpful guideline as a structured and logical means of ranking KA methods for evaluating appropriate tools for a small manufacturing industry organisation.

773.1.#.t: Journal of Applied Research and Technology; Vol. 21 Núm. 5 (2023); 825-849

773.1.#.o: https://jart.icat.unam.mx/index.php/jart

022.#.#.a: ISSN electrónico: 2448-6736; ISSN: 1665-6423

310.#.#.a: Bimestral

300.#.#.a: Páginas: 825-849

264.#.1.b: Instituto de Ciencias Aplicadas y Tecnología, UNAM

doi: https://doi.org/10.22201/icat.24486736e.2023.21.5.1659

harvesting_date: 2023-11-08 13:10:00.0

856.#.0.q: application/pdf

file_creation_date: 2023-10-24 17:51:47.0

file_modification_date: 2023-10-24 17:52:00.0

file_creator: Yolanda G.G.

file_name: 587d64063d7789bc6dc5608b78658d3b891d45eca4c9e706a55fe5f7bffd4846.pdf

file_pages_number: 25

file_format_version: application/pdf; version=1.6

file_size: 1344395

last_modified: 2024-03-19 14:00:00

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

No entro en nada

No entro en nada 2

Artículo

A Methodology for Selecting Optimal Knowledge Acquisition Through Analytic Hierarchy Process and Environment Parameters Impact.

Di Nardo, Mario; Murino, T.; Adegbola, K.

Instituto de Ciencias Aplicadas y Tecnología, UNAM, publicado en Journal of Applied Research and Technology, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Cita

Di Nardo, Mario, et al. (2023). A Methodology for Selecting Optimal Knowledge Acquisition Through Analytic Hierarchy Process and Environment Parameters Impact.. Journal of Applied Research and Technology; Vol. 21 Núm. 5, 2023; 825-849. Recuperado de https://repositorio.unam.mx/contenidos/4148911

Descripción del recurso

Autor(es)
Di Nardo, Mario; Murino, T.; Adegbola, K.
Tipo
Artículo de Investigación
Área del conocimiento
Ingenierías
Título
A Methodology for Selecting Optimal Knowledge Acquisition Through Analytic Hierarchy Process and Environment Parameters Impact.
Fecha
2023-10-30
Resumen
In a global economy characterised by increasingly dynamic markets and technologies, the primary importance of intangible resources like knowledge is growing dramatically, especially for small and medium-sized enterprises (SME). Therefore, many companies are trying to support changes by configuring their production systems towards mass customisation. This evolving paradigm shift from mass production to mass customisation brings about complex product lifecycles that require continuous re-engineering/configuration of modern manufacturing systems. Rapid manufacturing companies" changes result in adjusting and updating the existing knowledge base to maintain their competitive advantage. Within companies, different tacit and explicit knowledge are available, relating to resources, processes and components. This data is usually not digitised, and therefore the main challenge for small and medium-sized enterprises is how to automate the knowledge acquisition process, choosing the best tools for knowledge preservation. Starting from the analysis of models presented in the literature, we defined a methodology to support selecting the optimal acquisition of knowledge and preservation in any phase of production systems. In an environment where business uncertainty is the norm, developing knowledge acquisition capabilities is increasingly important. The paper"s main contribution is the AHP-PIE methodology, which provides a helpful guideline as a structured and logical means of ranking KA methods for evaluating appropriate tools for a small manufacturing industry organisation.
Tema
Knowledge Management; Industry 40; Analytical hierarchy process (AHP); Knowledge-based systems; Manufacturing Know
Idioma
eng
ISSN
ISSN electrónico: 2448-6736; ISSN: 1665-6423

Enlaces