dor_id: 39714

506.#.#.a: Público

590.#.#.d: Los artículos enviados a la "Revista Mexicana de Análisis de la Conducta", se juzgan por medio de un proceso de revisión por pares

510.0.#.a: Consejo Nacional de Ciencia y Tecnología (CONACyT); Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (Latindex); Scientific Electronic Library Online (SciELO); SCOPUS

561.#.#.u: http://www.psicologia.unam.mx/

650.#.4.x: Medicina y Ciencias de la Salud

336.#.#.b: article

336.#.#.3: Artículo de Investigación

336.#.#.a: Artículo

351.#.#.6: https://www.revistas.unam.mx/index.php/rmac/index

351.#.#.b: Revista Mexicana de Análisis de la Conducta

351.#.#.a: Artículos

harvesting_group: RevistasUNAM.109

270.1.#.p: Revistas UNAM. Dirección General de Publicaciones y Fomento Editorial, UNAM en revistas@unam.mx

590.#.#.c: Open Journal Systems (OJS)

270.#.#.d: MX

270.1.#.d: México

590.#.#.b: Concentrador

883.#.#.u: https://revistas.unam.mx/catalogo/

883.#.#.a: Revistas UNAM

590.#.#.a: Coordinación de Difusión Cultural

883.#.#.1: https://www.publicaciones.unam.mx/

883.#.#.q: Dirección General de Publicaciones y Fomento Editorial

850.#.#.a: Universidad Nacional Autónoma de México

856.4.0.u: https://www.revistas.unam.mx/index.php/rmac/article/view/23579/23913

100.1.#.a: Burgos, José E.

524.#.#.a: Burgos, José E. (2001). A biobehavioral approach to an aspect of social behavior. Revista Mexicana de Análisis de la Conducta; Vol. 27 Núm. 2, 2001. Recuperado de https://repositorio.unam.mx/contenidos/39714

245.1.0.a: A biobehavioral approach to an aspect of social behavior

502.#.#.c: Universidad Nacional Autónoma de México

561.1.#.a: Facultad de Psicología, UNAM

264.#.0.c: 2001

264.#.1.c: 2011-01-26

653.#.#.a: Social Behavior; Biobehavioral Approach; Computer Simulations; Pavlovian Conditioning; Evolution; Artificial Neural Networks; Genetic Algorithms; Conducta Social; Aproximación Bioconductual; Simulaciones Por Computadora; Condicionamiento Pavloviano; Evolución; Redes Neurales Artificiales; Algoritmos Genéticos

506.1.#.a: La titularidad de los derechos patrimoniales de esta obra pertenece a las instituciones editoras. Su uso se rige por una licencia Creative Commons BY-NC-ND 4.0 Internacional, https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico editor_general@rmac-mx.org

884.#.#.k: https://www.revistas.unam.mx/index.php/rmac/article/view/23579

001.#.#.#: 109.oai:ojs.pkp.sfu.ca:article/23579

041.#.7.h: eng

520.3.#.a: The present paper describes a biobehavioral approach to an aspect of social behavior, namely, learning to respond to the ongoing behavior of another individual. The approach was implemented through computer simulations that involved a combination of a neurocomputational model, a network model, a neurodevelopmental model, and a genetic algorithm. In Phase 1 of the core simulation, ten 50-generation lineages evolved under a Pavlovian procedure with one conditional stimulus (CS1). Each lineage had its own random founder population of 100 genotypes. In Phase 2, ten genotypes were randomly chosen from the last generation of each lineage, to form the founder population for a new lineage. In each generation of this lineage, individuals were randomly selected with a small probability to function as "senders". Senders were first trained under the same arrangement as their ancestors. Then, they were given 100 maintenance trials under the same arrangement, during which their output activations in the presence of the cs1 served as a cs2 for the rest of the population, which functioned as "receivers". All individuals were selected for high conditional responding to their respective cs. Results showed that selection for responding to the behavior of another network reduced population genetic and phenetic variation and increased mean population fitness across generations.

773.1.#.t: Revista Mexicana de Análisis de la Conducta; Vol. 27 Núm. 2 (2001)

773.1.#.o: https://www.revistas.unam.mx/index.php/rmac/index

022.#.#.a: ISSN: 0185-4534; ISSN electrónico: 2007-0802

310.#.#.a: Cuatrimestral

300.#.#.a: Páginas: 307-336

599.#.#.a: 109

264.#.1.b: Facultad de Psicología, UNAM

doi: https://doi.org/10.5514/rmac.v27.i2.23579

harvesting_date: 2024-02-23 00:00:00.0

856.#.0.q: application/pdf

245.1.0.b: Una aproximacion bioconductual a un aspecto de la conducta social

last_modified: 2024-02-23 00:00:08

license_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es

license_type: by-nc-nd

_deleted_conflicts: 2-bd09de2762141fd590c9cca7f5a2e90d

No entro en nada

No entro en nada 2

Artículo

A biobehavioral approach to an aspect of social behavior

Burgos, José E.

Facultad de Psicología, UNAM, publicado en Revista Mexicana de Análisis de la Conducta, y cosechado de Revistas UNAM

Licencia de uso

Procedencia del contenido

Cita

Burgos, José E. (2001). A biobehavioral approach to an aspect of social behavior. Revista Mexicana de Análisis de la Conducta; Vol. 27 Núm. 2, 2001. Recuperado de https://repositorio.unam.mx/contenidos/39714

Descripción del recurso

Autor(es)
Burgos, José E.
Tipo
Artículo de Investigación
Área del conocimiento
Medicina y Ciencias de la Salud
Título
A biobehavioral approach to an aspect of social behavior
Fecha
2011-01-26
Resumen
The present paper describes a biobehavioral approach to an aspect of social behavior, namely, learning to respond to the ongoing behavior of another individual. The approach was implemented through computer simulations that involved a combination of a neurocomputational model, a network model, a neurodevelopmental model, and a genetic algorithm. In Phase 1 of the core simulation, ten 50-generation lineages evolved under a Pavlovian procedure with one conditional stimulus (CS1). Each lineage had its own random founder population of 100 genotypes. In Phase 2, ten genotypes were randomly chosen from the last generation of each lineage, to form the founder population for a new lineage. In each generation of this lineage, individuals were randomly selected with a small probability to function as "senders". Senders were first trained under the same arrangement as their ancestors. Then, they were given 100 maintenance trials under the same arrangement, during which their output activations in the presence of the cs1 served as a cs2 for the rest of the population, which functioned as "receivers". All individuals were selected for high conditional responding to their respective cs. Results showed that selection for responding to the behavior of another network reduced population genetic and phenetic variation and increased mean population fitness across generations.
Tema
Social Behavior; Biobehavioral Approach; Computer Simulations; Pavlovian Conditioning; Evolution; Artificial Neural Networks; Genetic Algorithms; Conducta Social; Aproximación Bioconductual; Simulaciones Por Computadora; Condicionamiento Pavloviano; Evolución; Redes Neurales Artificiales; Algoritmos Genéticos
Idioma
eng
ISSN
ISSN: 0185-4534; ISSN electrónico: 2007-0802

Enlaces